
Distributed Page Table: Harnessing Physical
Memory as An Unbounded Hashed Page Table
Osang Kwon˚§, Yongho Lee˚§, Junhyeok Park˚, Sungbin Jang˚, Byungchul Tak:, and Seokin Hong˚

˚Department of Electrical and Computer Engineering, Sungkyunkwan University
:School of Computer Science and Engineering, Kyungpook National University

˚{osang915, jhyn205, vzx00770, sunbi3361, seokin}@skku.edu :bctak@knu.ac.kr

Abstract—Virtual memory systems rely on the page table,
a crucial component that maps virtual addresses to physical
addresses (i.e., address translation). While the Radix Page Table
(RPT) has traditionally been used for this task, its limitations
have become more apparent with the rise of memory-intensive
applications. Recently, Hashed Page Tables (HPTs) have been
explored as an alternative page table structure to offer faster
address translation. However, the HPT introduces its own set of
challenges particularly in resizing the page table and allocating
contiguous physical memory space for storing the table.

To tackle the fundamental problem of the existing HPT
designs, this paper introduces Distributed Page Table (DPT), a
novel approach that utilizes the physical memory as a huge
hashed page table. DPT distributes Page Table Entries (PTEs)
across the entire physical memory space, significantly reducing
the hash collisions while avoiding the table resizing overheads.
When distributing the PTEs across the physical memory, they can
be mapped to memory locations already allocated to data pages.
This new type of collision, referred to as address collision, may
reduce the effectiveness of the DPT. This paper showcases that
the DPT can effectively resolve the address collision with three
simple yet efficient techniques: Strided Open Addressing (SOA),
Collision-Aware Virtual Address Allocation (CVA) and Collided
Page Displacement (CPD). Our experimental results demonstrate
that DPT achieves average performance improvements of 12.6%,
11.6%, and 8.7% compared to traditional RPT, the latest large-
coverage TLB design, and state-of-the-art HPTs, respectively.

Index Terms—Virtual Memory, Page Table, Hashed Page Table

I. INTRODUCTION

Virtual memory is an essential abstraction in modern com-
puter systems as it provides vital functionalities including
memory virtualization and process isolation [1], [2], [4], [7],
[26], [37], [51], [53], [64]. The page table, which is responsible
for organizing address translations from virtual to physical
memory, plays a central role in implementing the virtual mem-
ory. However, with the ever-increasing computational demands
and the rise of memory-intensive applications, conventional
page table structures are now facing fundamental limitations
which require more advanced and efficient structures [28],
[29], [35], [36], [55], [65].

For many years, the radix-tree structure has been the corner-
stone of modern page tables [2], [27]. In the Radix tree-based
Page Table (RPT), the Page Table Entries (PTEs) are organized
in a hierarchical tree structure and are accessed through a
sequential traversal process known as a page table walk. To

§Both authors contributed equally to this work.

enhance this process, various caching strategies have been
introduced [6], [8], [9], [25]. However, the inherent structure of
the radix tree often becomes a bottleneck, primarily because it
requires sequential memory accesses in the address translation,
especially for the irregular memory-intensive workloads [10],
[32], [33], [52], [65].

Hashed Page Tables (HPTs) have been introduced as a
promising alternative to the traditional RPTs [23], [24], [26],
[30], [31], [55], [65]. In this approach, the virtual page
number is hashed to quickly index the tables, simplifying
the translation process to a single memory access. However,
HPTs come with their own set of challenges. First, managing
hash collisions effectively remains a significant hurdle, often
leading to sequential memory lookups or the costly process
of dynamically resizing the table [55], [56], [65]. Second,
maintaining a single global HPT that contains PTEs for all
active processes is impractical [17], [55], [59], [65]. While
using a HPT for each process can address this issue, deter-
mining the appropriate size for each per-process HPT is still
challenging [55], [56]. Third, the HPTs require contiguous
physical memory space to store the page table, which can
lead to significant inefficiencies in memory management. In
the worst-case scenario, where the HPT is significantly large,
the chances of finding a sufficiently large contiguous memory
space would be minute.

Recent studies have made significant progress in addressing
the challenges associated with HPTs. Skarlatos et al. [55]
proposed Elastic Cuckoo Page Table (ECPT), which utilizes
cuckoo hashing to reduce the overhead caused by hash col-
lisions in HPTs. ECPT employs per-process HPTs that are
dynamically resized according to occupancy. Although the
ECPT efficiently handles the hash collisions by adjusting HPT
sizes to meet application demands, it still requires contiguous
memory space for HPT storage. To overcome this limitation,
Stojkovic et al. [56] proposed an alternative approach that
partitions the HPT into discontiguous chunks of physical
memory and then uses a hash function to select a specific
chunk. While this approach reduces the need for contiguous
memory allocation, it still necessitates chunk resizing, poten-
tially leading to frequent data migrations, especially when the
initial chunk size is significantly smaller than the application’s
memory footprint.

The fundamental limitations of the HPTs primarily stem
from their constrained size. Thus, a straightforward approach

36

2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)

2379-315/24/$31.00 ©2024 IEEE
DOI 10.1109/MICRO61859.2024.00013

to overcome these limitations is to use a sufficiently large HPT
so that all PTEs can be accommodated in the table without
hash collisions. However, employing such a large HPT is
impractical because it requires a contiguous physical memory
space for allocation.

In this paper, we present Distributed Page Table (DPT), a
novel page table structure designed to overcome the limitations
of HPTs. DPT provides an illusion of a huge contiguous page
table without requiring the allocation of contiguous physical
memory space to hold the table. To achieve this, DPT utilizes
the entire physical memory as a huge page table and distributes
PTE pages (i.e., pages that hold PTEs) across the physical
memory space by determining their locations (i.e., physical
address) using a hash function. This approach eliminates the
need for a large contiguous memory space and significantly
reduces the frequency of hash collisions by treating the entire
memory space as the hashing target.

Even though DPT can significantly reduce the hash collision
between PTE pages, it may introduce a new type of collision.
Since DPT determines the physical address of the PTE pages
using a hash function, these pages might be mapped to
physical memory locations already allocated to regular data
pages. We refer to this situation as address collision. Address
collisions can reduce the effectiveness of DPT. However,
compared to hash collisions, they are much easier to resolve
due to the greater flexibility in allocating the physical and
virtual addresses for data pages.

To resolve address collisions, we introduce three efficient
techniques: Strided Open Addressing (SOA), Collision-Aware
Virtual Address Allocation (CVA), and Collided Page Displace-
ment (CPD). SOA sequentially searches for a free physical
frame using a probing method designed for fast searches in a
virtual memory system that supports multiple page sizes. CVA,
on the other hand, searches for non-collision virtual memory
regions instead of non-collision physical frames. While SOA
and CVA help DPT avoid address collisions, shortages of
free physical frames or non-collision virtual memory regions
can still result in address collisions. To address this, CPD
migrates collided data pages to free physical frames. Addi-
tionally, we introduce two techniques for further optimiza-
tion: Fragmentation-Aware PTE Allocation (FAP) and PTE
Pooling (PTP). FAP aims to minimize memory fragmentation
by allocating PTE pages within already fragmented memory
areas, while PTP mitigates address collisions by preemptively
allocating PTE pages in the contiguous virtual memory space
of the Heap area. These techniques are orthogonal and can be
combined to enhance system performance.

We evaluate DPT using a cycle-level multi-core simulator
extended to support detailed address translation mechanisms,
including page table structures and the page walk process.
Experimental results demonstrate that DPT outperforms RPT
and the state-of-the-art HPT. Compared to RPT, the latest
large-coverage TLB design, and the state-of-the-art HPT, DPT
achieves average performance improvements of 12.6%, 11.6%,
and 8.7%, respectively.

CR3

[47:39] [29:21]VA [38:30] [20:12] [11:0]

PGD PUD PMD PTE PA++ + + +

Fig. 1: Virtual to physical address translation for using a Radix Page
Table in x86-64 architecture.

II. BACKGROUND

A. Radix Page Table: Radical Factor of Costly Translation

In modern computer systems, a Radix Page Table (RPT)
is commonly employed to manage virtual-to-physical address
mapping. The RPT organizes these mappings using a multi-
level tree data structure. When an address translation request
misses the Translation Lookaside Buffer (TLB), the hardware
performs a Page Table Walk (PTW) to find the required
mapping information by traversing multiple levels of the in-
memory page table.

Figure 1 illustrates an example of a PTW for a 4-level page
table with a 4KB base page in the x86-64 architecture [2], [27].
The hardware page table walker retrieves the base address of
the page table from the CR3 register and sequentially accesses
each level (PGD, PUD, PMD, and PTE) of the page table. This
sequential access entails significant performance overhead.

To reduce this overhead, a caching mechanism known as
Page Walk Cache (PWC) [8] has been introduced. The PWC
stores recently accessed entries of the intermediate-level page
table (from PGD to PMD). However, the PWC is less effective
for irregular memory-intensive workloads, especially in a
system with a deeper page table (e.g., 5-level page table) [28],
[48], [55].

B. Hashed Page Table: Hashing instead of Walking

Hashed Page Table (HPT) mitigates address translation
overhead in the RPT by employing a hash function instead
of the repetitive and serial page table walk [18], [22], [24],
[26], [31], [55], [57], [65]. Figure 2a illustrates the address
translation process in a conventional HPT system. The hash
function (denoted as H) uses a Virtual Page Number (VPN) as
input and generates a hashed value, serving as an index for the
table. This approach enables address translation with a single
memory access when no hash collisions occur. HPT has been
employed in several real-world systems [23], [24], [26].

C. Hashing, Is It a Panacea?

Although HPT is useful in mitigating the address translation
overhead, it has limitations due to its reliance on “hashing”
instead of “walking”. Firstly, if a hash collision occurs, addi-
tional memory access is required to locate the necessary Page
Table Entries (PTEs) using a collision handling scheme (such
as chaining and open addressing [65]). Unfortunately, it is
impossible to achieve zero collisions since the virtual address
space is typically much larger than the physical address space.
Secondly, the entry size of HPT is larger than that of RPT
because the VPN is stored in the entry as a hash tag, as
shown in Figure 2a. The larger PTE size increases the overall

37

OffsetVPNVA

index #

Base

HPT
PTE

…

Tag n

PTE Tag 1

H

…

+

(a) Conventional HPT

Base

HPT
PTEs

…

PTE offset

index #

OffsetVPN tag

+

H

+ PTEs

(b) PTE clustering

PTE
PTE

3-way HPT

HPT2

HPT3

HPT1

Base2

Base3

PTE offset OffsetVPN tag

PTEs

Base1

H1

+ +

(c) ECPT
L2P Base

c1
c2
c3
c4

Chunk

Offset

Chunk

Chunk

1

PTEsH1
% CS

+

/ C

S

Ch
un

k
Si

ze
 (C

S)

PTE offsetVPN tag

L2
P1

+

+

(d) ME-HPT

Physical
memory

DataPTE frame #

…

PID

…

PTEs

PTE offset OffsetVPN tag

H +

(e) DPT (Our proposal)

Fig. 2: Hashing-based page tables: (a) Conventional hashed page table (HPT) (b) PTE-clustered HPT, (c) Elastic cuckoo page table
(ECPT) [55], (d) Memory-efficient HPT (ME-HPT) [56], and (e) Distributed Page Table (DPT). Conventional HPT, ECPT, and ME-HPT
allocate and manage page tables within single or multiple continuous memory spaces. In contrast, DPT can allocate PTE pages anywhere in
physical memory using hashing, eliminating the need for contiguous memory spaces.

page table size and reduces the entry density in a cache line,
leading to lower hit rates for the PTEs in cache hierarchy [65].
Finally, the hashing-based indexing scheme reduces the spatial
locality of PTEs in memory. Since the hash function uses the
VPN as a hash key (i.e., hash input), PTEs of contiguous
virtual addresses are scattered across the HPT. This low spatial
locality leads to inefficient fetching of PTEs from the in-
memory page table, particularly for workloads with high page-
access locality [6].

D. Prior Work - Advancements in Hashing Approaches

Yaniv et al. [65] proposed a PTE clustering scheme to
improve the spatial locality of the PTEs by storing consecutive
PTEs that share the same VPN tag in a hash slot, as illustrated
in Figure 2b. Additionally, the VPN tag is embedded into
unused bits of the PTE to reduce the HPT entry size, allowing
the hash slot to fit within a single cache line.

Skarlatos et al. proposed the Elastic Cuckoo Page Table
(ECPT) [55], adopting cuckoo hashing [43] to handle the
hash collisions in HPT. ECPT utilizes an n-way set-associative
structure with a distinct hash function for each way, as
illustrated in Figure 2c. When allocating PTEs, ECPT chooses
a specific way (i.e., page table) and calculates an index using
the associated hash function. If the target index in the selected
page-table way is already occupied, the new PTE displaces
an existing entry in that way. The displaced entry is then
reassigned to an alternate page-table way. This displacement
and reassignment process continues iteratively until all PTEs
are placed in the page table without causing further evictions.

While ECPT enables fast table lookups by simultaneously
probing all ways, it necessitates the allocation of multiple
page-table ways in contiguous physical memory regions. Such
allocations, often requiring multiple attempts, may result in
failures in highly fragmented systems [56].

To address the need for contiguous memory regions in
ECPT, Stojkovic et al. proposed the Memory-Efficient Hashed
Page Table (ME-HPT) [56]. In ME-HPT, a page table con-
sists of multiple small chunks (typically 8KB) whose base
addresses are maintained in a dedicated table called L2P table,
as illustrated in Figure 2d. ME-HPT can expand the page table
size with low overhead by simply allocating additional chunks.
However, if all entries in the L2P table are occupied, the chunk

size must be enlarged, resulting in significant overhead due to
costly data migrations.

A recent study utilizes the hashing to develop a TLB
compression scheme called Mosaic, which aims to expand
TLB coverage [21]. The Mosaic scheme employs Compressed
Physical Frame Numbers (CPFNs) in each TLB entry to hold
more address translation information. It introduces a hash-
based method to convert CPFNs to their physical addresses.

III. MOTIVATION

A. Key Challenge of Prior HPTs: PTE Migrations

Recent studies have proposed new forms of HPT designs to
handle hash collisions better and to enable efficient page table
resizing. However, these designs may result in frequent PTE
migrations. There are two main reasons for this.

First, new HPT designs use cuckoo hashing, which relocates
a PTE from a collided entry to another table (i.e., way). If
yet another collision occurs, the PTE needs to be migrated
again. Second, dynamic resizing of the page table, a key
operation of HPT designs, causes PTEs to migrate from the
old table to a new one. For instance, ME-HPT starts with small
chunks (e.g., 8KB) and increases their size as needed. During
resizing, PTEs from multiple small chunks are consolidated
into a larger one, which can lead to repeated migrations. This
issue becomes more prominent if the initial chunk size is
significantly smaller than the application’s memory footprint in
which case the resizing will be more frequent. Although ME-
HPT uses in-place resizing to minimize the cost of migrations,
the rehashing process can still cause cache pollution by loading
unnecessary data [54], [62], [63].

B. Performance Impact of PTE Migrations

Kernel Perspective: We measure the PTE migrations per
page allocation (PMPA) in the ME-HPT using our simulation
environment. As shown in Figure 3 (left), the PMPA values
for GRAPH, GEN, RND, and XS workloads are 7.5, 7.7, 2.8,
and 13.9, respectively. To assess the performance impact of
the PTE migrations, we emulate them on a real Linux system
by conducting the migration at the measured PMPA rates
during the memory allocation process (See Section VIII-A for
detailed experimental methodology).

38

PT
E

M
ig

ra
tio

ns
 p

er
Pa

ge
 A

llo
ca

tio
n

(P
M

PA
)

Fig. 3: Frequency of PTE migrations (left) and their performance
impact (right) in a conventional system. The workloads used in this
experiment are detailed in Table II; ‘GRAPH’ represents the average
of experimental results across all GraphBIG workloads.

Figure 3 (right) demonstrates the effect of PMPA by
comparing the execution time of workloads in the baseline
system (left bar) with that in the system using the ME-HPT
(right bar). As shown in the figure, PTE migrations lead to
execution time increases of 5.3%, 57.2%, 4.4%, and 41% for
the GRAPH, GEN, RND, and XS workloads, respectively
(15.5% on average). The performance impact is particularly
severe for workloads such as GEN and XS, where kernel time
significantly contributes to the total execution time.

This performance degradation stems from two key issues
during the PTE migrations. First, user threads requesting
page allocation experience delays because they must wait
for the migration to complete [60]. While page allocation
can be performed in parallel with the execution of other
threads, the delay in the execution of requesting user threads
is unavoidable. Second, the page allocation time is extended
due to the PTE migrations, intensifying the contention among
threads accessing and updating the page table. Page allocation
is managed through the page fault handling process, which
consumes thousands of CPU cycles. During this process, a
locking mechanism is essential to prevent other threads from
accessing the page table while it is being updated. When mul-
tiple threads generate page faults simultaneously, contention
for the lock can lead to severe performance degradation. This
problem is exacerbated when a thread holds the lock for an
extended period during page allocation [3], [15].

Coherency Perspective: ME-HPT employs a metadata
cache called Cuckoo Walk Cache (CWC) to hold the PTE
metadata necessary for calculating the physical address of
PTEs. As PTE metadata is updated due to migrations, main-
taining coherence between the CWCs of different processor
cores becomes challenging. In particular, frequent changes in
PTE locations due to cuckoo hashing exacerbate this issue,
leading to potential conflicts where different CWCs may
contain inconsistent information.

Two main approaches can be used to maintain coherence
between CWCs. First, a costly CWC shootdown technique,
similar to the TLB shootdown, may be necessary. Second,
error-handling techniques can address inconsistencies when
accessing PTEs from CWCs. ME-HPT uses the second ap-
proach to manage this challenge. It initially reads the PTE
from the physical address calculated using metadata from the

R
el

at
iv

e
Fr

eq
ue

nc
y

of
H

as
h

C
ol

lis
io

ns

Fig. 4: Frequency of hash collisions for various HPT sizes (normal-
ized to a 32KB HPT).

CWC. If the read PTE is incorrect, ME-HPT recalculates the
actual physical address and re-accesses the memory to retrieve
the correct PTE. This method allows ME-HPT to avoid the
costly CWC shootdown process.

The primary goal of HPT is to enable the retrieval of PTEs
with a single memory access. However, resolving inconsisten-
cies in CWCs often requires two sequential memory accesses,
which offsets the benefits of CWCs even when hit rates are
high. Additionally, since CWCs are core-specific, a single
PTE migration can trigger the error-handling process across
multiple cores, leading to significant performance degradation.
Given that computing systems are expected to scale up to
as many as 640-core CPUs by 2037, as projected by the
International Roadmap for Devices and Systems (IRDS) [13],
the impact of metadata consistency issues in HPT designs is
likely to become more severe. This suggests the need for
further optimizations or alternative approaches to maintain
performance efficiency in massively parallel systems.

C. Reducing Hash Collisions with Large HPT: A Simple Yet
Challenging Approach

Effectively handling hash collisions is crucial for HPTs as
they rely on hash functions. While several methods exist for
mitigating hash collisions, avoiding them entirely remains to
be challenging. Collision resolution techniques often initiate
the page table resizing when the overhead of collision handling
becomes excessive due to too frequent collisions. ME-HPT
addresses collisions through PTE migration [56], but frequent
collisions lead to many migrations inducing high overheads.

We conduct an experiment to observe the effect of page
table size on hash collisions. In this experiment, we allocate
the page table in a contiguous memory space and measure the
frequency of hash collisions during data access to 100 million
random addresses. Figure 4 shows a rapid decrease of hash
collision counts as table sizes increase from 32KB table size
although the gain diminishes at the size beyond 4GB. The
number of hash collisions at 16GB table size is about 2.3%
of the hash collisions at 32KB table size.

This experimental result demonstrates that larger-sized
HPTs effectively manage hash collisions by significantly re-
ducing their frequency. Despite these promising results, the
challenge remains in securing contiguous memory space for
these large tables (e.g., 4GB). Therefore, we aim to develop an
HPT structure capable of handling substantial sizes without
requiring contiguous memory allocation.

39

IV. DISTRIBUTED PAGE TABLE

In this section, we introduce a novel page table structure
called a Distributed Page Table (DPT) that can overcome the
fundamental limitation of prior HPT designs. The key idea
of DPT is to distribute page table entries across the entire
memory space. Instead of allocating small contiguous regions
of the physical memory to store the page table, DPT uses the
entire physical memory space as a huge HPT. Prior HPTs use
the hash value as a table index. In contrast, our DPT uses
the hash value as the physical memory address of the PTEs,
as illustrated in Figure 2e. This approach eliminates the need
to allocate the page table in a contiguous space. This section
describes how the DPT allocates the page table entries (PTEs)
and uses them for the address translation.

A. Address Translation Flow

In conventional HPT, the virtual page number (VPN) is used
as a hash key to determine the table index for the virtual
address (VA). However, this does not consider the reference
locality of the PTEs. To tackle this, a prior study [65] proposed
a locality-aware addressing scheme that divides a VA into three
fields: VPN tag (33 bits), PTE offset (3 bits), and page offset
(12 bits). In this way, PTEs for eight contiguous virtual pages
are stored in a cache line, increasing the locality of the PTEs.

DPT uses a similar approach to cluster contiguous PTEs in
the address translation process. However, unlike conventional
PTE clustering, DPT clusters 512 PTEs for a 2MB virtual
memory region and stores them in a 4KB page. This method
is similar to the typical RPT, which stores 512 PTEs in a PTE
page that is a leaf node of the radix tree. To this end, DPT
uses 9 bits of a virtual address for the PTE offset.

Figure 5 illustrates how our DPT generates a physical PTE
address for a given VA. It computes the physical frame number
(PFN) of the PTE page using a hash function that takes a VPN
tag and a process ID (PID) as inputs. The PID is used as a
unique seed for the hash function since the VPN is not unique
across processes. To specify the location of a PTE within the
4KB PTE page, a 9-bit PTE offset is appended to the PFN.

B. Allocating Page Table Entries

Figure 6 illustrates the DPT’s PTE allocation process.
Initially, DPT checks a frame bitmap to determine if the target
physical frame for the hashed PFN is free (❶). The bitmap
indicates whether each physical frame (4KB in size) is free or
allocated to store PTEs. Each bitmap entry contains a Free bit
and a PTE flag bit (Free, PTE). An entry of (1, 0) indicates
the frame is free, while (0, 0) or (0, 1) indicates that it is

Page offsetPTE offset
12 11 0……2047 21…

VA

11 063
PTE

address
Page offset

12H 3

VPN tag

PTE offset
… …

PID

PFN

Fig. 5: PTE address generation of DPT.

PTE page
1 1 0 1 0 0 0

Frame bitmap

Physical memory

Free Allocated

1 0 0 1 0 1 0
Free

PTE

➊

➋

➌

PFN PTE offset
11 063

PTE
address

12 3

..

4KB

Fig. 6: PTE allocation of DPT.

allocated. If the target frame is free, DPT assigns it to a PTE
page for the given VA (❷). Then, DPT uses the PTE offset
to place the PTE at a specific location within the page (❸).
If another PTE page or data page already occupies the target
frame, DPT employs collision resolution techniques, which
will be described in the following section.

V. RESOLVING ADDRESS COLLISION

DPT expands the range of hash functions by utilizing
the entire physical memory space, significantly reducing the
likelihood of hash collisions. However, as memory usage
increases, there is a possibility that DPT inadvertently assigns
a PTE page to a physical address already occupied by another
page (either a PTE page or a regular data page). We refer to
this situation as an address collision. This section introduces
three novel techniques to resolve address collisions: Strided
Open Addressing (SOA), Collision-Aware Virtual Address
Allocation (CVA), and Collided Page Displacement (CPD).
These techniques are orthogonal and can be combined to
enhance overall system performance. During runtime, DPT
applies these three techniques sequentially in the order of
SOA, CVA, and CPD.

A. Strided Open Addressing
Motivated by the hash table’s open-addressing method, we

propose the Strided Open Addressing (SOA) technique that
sequentially seeks a free physical frame with a strided search-
ing method. Modern operating systems support multiple page
sizes: usually 4KB (base page), 2MB (large page), and 1GB
(huge page). Therefore, a collided address can be located on a
base, large, or huge page. By taking into account the multiple
page size support, the strided searching method generates a
sequence of PFNs with two parameters (stride and step) along
with a hash function to find a free physical frame quickly.

In this study, we use three stride values (1, 512, and 256K)
with the assumption that the operating system supports the
above three page sizes. When a collided address is located on
a base page, the strided search uses a stride of 1. Conversely,
it uses 512 and 256K stride for the collision on a large page
and a huge page, respectively. The step parameter can reach
MAX SOA STEP, which is a design parameter.

When a PFN calculated with a hash function is already
allocated, SOA initially determines the page size allocated to
that PFN by checking the free bits of the frame bitmap. Then,
it calculates the next PFN to be probed by using the equation 1
with an appropriate stride and a step of 1.

PFNPTE “ HashpV PN tagq ` Stride ˆ Step (1)

40

…
Physical memory

Collision with 4KB page

Allocated(4KB)
Free(4KB)
Free(4KB)

Allocated(4KB)

Strided
searching

H

VPN
tag

Stride: 1
Step: 2

…
Physical memory

Collision with 2MB page

Allocated(2MB)

Free(4KB)
Free(4KB)

Allocated(4KB)

Strided
searching

H

VPN
tag

Stride: 512
Step: 1

… …

Physical Frame Number of PTE = Hash(VPN tag) + Stride × Step

Collision!
➊

➋

Collision!
①

②Allocated(4KB)

Fig. 7: Strided open addressing for a collision with 4KB page (left)
and for a collision with 2MB (right).

If the next PFN is also already allocated, the step value is
incremented by 1, and the PFN is recalculated. If SOA fails
to find a free physical frame with the current stride until the
step value reaches MAX SOA STEP, it then uses the next
larger stride value. However, the SOA could fail even after a
full search. Then, the DPT uses another collision resolution
method, which will be described in the next subsections.

Figure 7 illustrates how SOA resolves the address collision
for two scenarios. In the first scenario (left), an address
collision occurs when the PFN calculated with a hash function
for a given VPN tag is already allocated to a 4KB base
page (❶). To resolve this collision, SOA searches for a free
frame in the subsequent frames. In this example scenario, SOA
finds a free frame in two steps (❷). Therefore, the values
for the two SOA parameters (stride and step) are set to 1
and 2, respectively, in a metadata table (will be described
in the section VII), for the corresponding VA region. These
parameters are then used for PFN calculation when accessing
the VA region.

In the second scenario illustrated in Figure 7 (right), the
collided physical frame is already allocated to a 2MB large
page (①). Therefore, with a short stride (e.g., a stride of 1), it
may be difficult to find a free frame within a limited number
of steps. In such cases, SOA uses a stride of 512 to search
for free frames beyond the 2MB range. In the example shown
in Figure 7, SOA successfully finds a free frame by using a
stride of 512 and a step of 1 (②).

The strided probing method can be easily implemented
by checking the free bits in the frame bitmap. The search
function begins at a specific free bit indexed by a hash
function for a given VA. During the strided search, subse-
quent bits are checked within a search range (i.e., stride x
MAX SOA STEP) until a free frame is found. If no free
frame is detected, it uses a larger stride (i.e., 512 or 256K)
and continues searching.

B. Collision-Aware Virtual Address Allocation

Although SOA can effectively resolve address collisions
by searching for an available physical frame, its capability
is limited to the range of the search window defined by its
parameters (stride and step). Since these parameters are stored
in memory for each virtual memory region and loaded during
address translation, using a large number of bits for these
parameters is impractical due to hardware overheads.

Virtual memory
Search

collision-free
region

➋ …

Free(2MB)

Free(2MB)

…

…

Allocated(4KB)
Free(4KB)
Free(4KB)

Allocated(4KB)
…

Physical memory

VPN tag 1
H

Use
virtual address
of this region

Collision!

VPN tag 2
H

Allocate
this frame
for PTE

➊

➌➍

Allocated(4KB)

Fig. 8: Collision-aware virtual address allocation.

As a hardware-efficient approach, we propose the Collision-
Aware Virtual Address Allocation (CVA) technique. Rather
than selecting a non-collision PFN for a given VA, CVA
chooses a non-collision VA to resolve the address collisions.
Fortunately, the operating system has significant flexibility in
choosing a virtual memory region for allocation. Moreover,
the virtual address space is often much larger than the physical
memory, providing the operating system with a wide range of
options for allocating a virtual memory region in the memory
allocation process.

CVA leverages the flexibility in selecting a virtual memory
region during the memory allocation. Since DPT allocates a
single PTE page for every 2MB virtual memory region as
described in Section IV-A, CVA searches 2MB regions where
the collisions do not occur. Figure 8 illustrates how CVA
finds a collision-free virtual memory region. When a memory
allocation request is made, DPT identifies an available virtual
memory region and computes its PFN using the region’s VA.
As shown in the figure, the PFN derived from VPN tag 1 leads
to an address collision (❶), as that PFN is already in use.
Consequently, CVA recalculates the PFN for another available
virtual memory region (❷) and then checks potential collisions
with the PFN. Since the physical frame corresponding to this
new PFN is free, it is assigned to store the PTE page for
the virtual memory region (❸). Finally, the memory allocator
provides the application with the virtual address of this newly
allocated region to fulfill the memory allocation request (❹).

As described above, CVA searches the collision-free region
in a 2MB unit. Therefore, finding a collision-free region larger
than 2MB can be challenging because all 2MB chunks of the
large region must be free of collisions. Due to this constraint,
CVA limits the memory allocation size to MAX CVA SIZE,
which serves as the upper boundary on the memory size that
can be allocated using CVA. Additionally, CVA limits the
maximum number of searches to MAX CVA CNT. These
two parameters ensure the memory allocation process remains
efficient and does not become a performance bottleneck due
to extensive searching for collision-free regions.

In demand paging, a PFN can be lazily assigned to an
allocated VA only when the VA is accessed [20], potentially
limiting the applicability of CVA. This limitation can be
addressed by proactively pre-allocating PFNs for allocated VA
or by resolving collisions on the lazily assigned PFNs using
other collision-resolving techniques (SOA and CPD).

C. Collided Page Displacement

The use of SOA and CVA techniques can help DPT
avoid address collisions. However, even with these techniques,

41

…
Physical memory

Migrate collided (victim) page

Migrate
victimH

VPN
tag

Reverse
map

Collision!➊ ➋

PTE page
(0x21)
Free

(0x22)

Victim
(0x20)

PTE page
of Victim

…

PFN
(0x20)PFN

(0x20)

Frame bitmap

0 1
0 0

Free
PTE

Update
PTE of
Victim

➌
0x20 0x22

…

…

PTE page
(0x21)
Victim
(0x22)

PTE page
(0x20)

PTE page
of Victim

…

…

Physical memory
After allocation

H

VPN
tag

PFN
(0x20)

Frame bitmap

0 0
1 0

Free
PTE

0x20 0x22

Fig. 9: Collided page displacement.

DPT may still encounter address collisions, particularly when
physical memory usage is high and there are insufficient free
physical frames (or available non-collision VA regions).

To address this challenge, we propose Collided Page Dis-
placement (CPD) that migrates a data page already allocated
to the collided physical frame to a new frame. Figure 9 shows
how CPD resolves the address collision. CPD selects the page
residing in the collided page as a victim. If the victim page is
a data page (❶), CPD migrates it to a free frame (❷).

When a page is migrated to a different physical frame, the
victim page’s PTE must be updated to accurately redirect the
VA associated with the victim to a new physical frame. To this
end, CPD leverages the reverse map, a mechanism frequently
used in modern operating systems for efficiently handling
page swapping, migration, and compaction [11], [40], [46].
The reverse map maintains the physical address for the PTE
corresponding to each physical frame, allowing us to directly
obtain the physical address of the victim page’s PTE (❸).

CPD does not migrate the PTE pages because the page
tables have unmovable characteristics that ensure stability
in modern operating systems [44], [66]. Additionally, DPT
cannot migrate specific pages marked as non-migratable by
I/O drivers or kernel components [20]. To resolve the address
collisions on non-migratable or PTE pages, CPD collaborates
with SOA to identify potential victim pages among migratable
ones. With SOA, the PFN is calculated with the equation 1,
allowing CPD to select a suitable victim from a set of
candidates reachable by SOA.

VI. ADDITIONAL OPTIMIZATIONS

A. Fragmentation-Aware PTE Allocation

External fragmentation occurs when there is sufficient total
free memory, but the non-contiguous arrangement of free
blocks prevents the allocation of larger continuous spaces.
With DPT, this fragmentation can worsen because it distributes
PTEs across the entire physical memory. Since the operating
system prevents the migration of PTE pages, combining small
free memory blocks into a large contiguous block during
memory compaction [14] becomes challenging [47], [66].

To minimize external fragmentation caused by PTE allo-
cations, DPT adopts a Fragmentation-Aware PTE Allocation
(FAP). When allocating a PTE page, FAP opportunistically
selects a physical frame within a fragmented 2MB region
already broken into non-contiguous 4KB pages. To this end,

VPN tag
(21 bit)

Metadata0
(6 bit)

Metadata1
(6 bit) ··· Metadata62

(6 bit)
Metadata63

(6 bit)

Stride
(2 bit)

Step
(4 bit)

Fig. 10: DPT metadata table entry.

FAP uses the frame bitmap to check if a free 4KB physical
frame, which is selected with a hash function, resides within
a fragmented 2MB region. On the address collision, FAP
allocates one of the free physical frames selected by the
collision resolution techniques (i.e., SOA, CVA, or CPD).

B. PTE Pooling

DPT can employ the PTE Pooling (PTP) to reduce address
collisions by pre-allocating multiple PTE pages in physical
memory. During application initialization, PTP creates a re-
served region by preemptively allocating PTE pages for the
contiguous virtual memory space of the heap area. At this
stage, physical frames are not allocated to each PTE to avoid
unnecessary memory usage. Thus, both the PFN and Present
fields of these PTEs are set to zero, indicating that physical
frames have not yet been allocated. When a memory allocation
request is made, the virtual address space in this reserved
region is dynamically allocated to the application at runtime.
This approach ensures efficient memory usage and reduces the
likelihood of address collisions.

VII. IMPLEMENTATION

In this section, we describe a new data structure required
to implement DPT and minor modifications to the Memory
Management Unit (MMU). We also describe how the DPT
can be implemented in the Linux kernel.

A. DPT Metadata Table

During the address translation, DPT needs to obtain the
SOA parameters (stride and step) to quickly calculate the PTE
page address for a requested virtual address. To achieve this,
DPT stores these parameters in a DPT Metadata Table (DMT)
when allocating the PTE pages. As illustrated in Figure 10,
each entry in the DMT contains multiple metadata, each of
which comprises stride and step for a 2MB virtual memory
region. The DMT is indexed using a hash function combined
with an open-addressing method, which requires including a
VPN tag in each entry.

The metadata size (i.e., the number of bits used for stride
and step) is a design parameter. Figure 10 shows a DMT entry
comprising 64 metadata (each with a 2-bit stride and a 4-
bit step) and a 21-bit VPN tag. The validity of metadata is
indicated using an unused stride value in the 2-bit stride field.
In the current design, DPT supports only three strides (i.e.,
2’b00: stride of 1, 2’b01: stride of 512, and 2’b10: stride of
256K). Consequently, the unused stride (i.e., 2’b11: invalid)
can be used to indicate the metadata invalidity.

The DMT is a process-specific structure allocated in a
designated memory region for each process. The base address
of each DMT is accessed through a specific processor register,

42

2M-
DMT

1G-
DMT

MMU

4K-
DMC

2M-
DMC

1G-
DMC

Memory

4K-
DMT

Stride
(2 bit)

Step
(4 bit)

➊

➋

Metadata➌

4K-metadata Valid
2M-metadata Valid
1G-metadata Invalid

➍
SOA

➏

PTE
page

Data
page

➎

Fig. 11: Address translation of DPT with DMC and DMT.

enabling the Memory Management Unit (MMU) to locate the
DMT for address translations. During a context switch, the
operating system updates this register with the base address
of the new active process’s DMT.

The DMT is highly efficient in managing address transla-
tions due to its compact structure, where each entry can cover
a substantial portion of physical memory. A single DMT entry
containing 64 metadata can cover up to 128MB of physical
memory space. In our default setup, the DMT is initialized
with 8192 entries, with a total size of 512KB. Even with this
small size, the DMT can cover 1TB of physical memory space.

B. DPT Metadata Cache in MMU

The DPT metadata can be stored in the cache hierarchy
to enhance address translation. However, a cache miss on the
metadata requires additional off-chip memory access, which
can be particularly challenging for irregular and memory-
intensive workloads. To decouple the DPT from cache be-
havior, DPT employs a DPT Metadata Cache (DMC) in the
MMU. In the current system with RPT, the MMU employs
Page Walk Caches (PWCs) [6], [39], [48]. We repurpose the
PWC as a DMC to store frequently accessed DMT entries.

The DMC and PWC both employ a set-associative cache
structure, but they differ significantly in their operational focus
and coverage. The main distinction between the DMC and
PWC lies in their address space coverage. The DMC can
handle approximately eight times the memory space of the
PWC with the same cache size. While the PWC is designed
to store physical addresses of the next-level page table, the
DMC is designed to store a set of DMT metadata. Since
the DMT metadata consists of small bits, DMC can store
multiple metadata, each covering a contiguous 2MB memory
region, within a single DMT entry. This capability provides
high efficiency and scalability for managing larger memory
spaces with the DMC.

C. Supporting Multiple Page Sizes

To support multiple page sizes (4KB, 2MB, and 1GB),
DPT employs the corresponding DMT and the DMC for each
page size as shown in Figure 11. The DMTs are referred
to as 4K-DMT, 2M-DMT, and 1G-DMT, corresponding to
the 4KB, 2MB, and 1GB pages, respectively. Similarly, the
DMCs are named 4K-DMC, 2M-DMC, and 1G-DMC. For
instance, a 4K-DMT stores metadata for calculating PTE page
addresses for a 4KB page, while a 2M-DMT stores metadata
for calculating PTE page addresses for a 2MB page.

As shown in Figure 11, for translating a requested virtual
address (VA), DPT accesses all DMCs for different page sizes
simultaneously (❶). Each DMC is indexed differently based
on its page size. For example, to access the 4K-DMC, the
upper 24 bits of the VA are used to calculate the set and tag
bits. The indexing method for DMCs corresponding to larger
page sizes follows a similar approach, except for excluding an
additional 9 bits from the VA. If a translation request results in
a miss in the DMCs, the MMU reads the necessary metadata
from a DMT stored in the cache hierarchy (❷).

With the three metadata read from the DMCs (❸), the
page size for a requested VA is determined. For example,
as shown in Figure 11, both 4K-metadata (i.e., metadata for
4K page) and 2M-metadata (i.e., metadata for 2MB page)
are valid (❹), indicating that metadata for both 4KB and
2MB pages exists for the VA. In this case, since the 2MB
virtual memory space covered by the 2M-metadata already
encompasses 512 4KB pages covered by the 4K-metadata,
only the 4K-metadata is accessed to check for the presence
of the page table entry (PTE). If all metadata is invalid, DPT
allocates PTE pages (using SOA, CVA, and CPD in the event
of an address collision) and updates the DPT metadata (❺).
Once a PTE page is allocated, it is used to store the translation
information for the data page (❻).

D. Compatibility with Linux Memory Management Subsystem

To integrate DPT seamlessly with the Linux kernel, we
ensure compatibility with the Linux memory zone framework.
Memory zones in Linux are used to handle memory allocation
across different types of memory (e.g., DMA, normal, and high
memory). Both the conventional RPT and our proposed DPT
implementation use ZONE NORMAL so that PTEs are allo-
cated within the appropriate memory zone. This compatibility
is essential for maintaining system stability and efficiency of
memory allocations across different zones. By aligning DPT’s
memory allocation strategies with ZONE NORMAL bound-
aries, we can avoid potential conflicts within the conventional
Linux memory management infrastructure.

E. DPT Implementation in Linux Kernel

In this section, we describe an implementation example of
DPT on Linux (version 5.11.6) to demonstrate the feasibility
of DPT in a real operating system.

Frame Bitmap: The DPT system uses a frame bitmap to
check physical frame usage and the presence of the PTE page
for efficient memory management. When implementing DPT
in Linux, we can leverage existing kernel functions rather
than using a separate data structure (i.e., frame bitmap). For
example, PageBuddy() can be used to check if a physical frame
is free. To check whether a physical frame is allocated to
PTEs, we can use PageTable() function. Similarly, we can use
PageLRU() and compound order() functions for the PTE allo-
cation. PageLRU() can be used to determine whether a page is
migratable, while compound order() helps identify fragmented
pages and determine the size of an already allocated page.

43

PageBuddy()
Free?

Yes
SOA max?

compound_order()Yes

add candidate

Yes

del_page_from_free_list()

No Fragmented?

DMT update &
PTE set

done

CPD

No

get_unmapped_area()

get page

expand()

list_add()

➊

➋

➌

➍
ptep_set_access_flags()

Migratable?
Yes

CVA max?

No

Yes

hash

virtual address

No

PageLRU()

select candidate

migrate_pages()

split page

➎
➏ ➐

➑

➒
➓

No

Fig. 12: PTE page allocation flow in Linux kernel with DPT.

We describe how these functions are used during the PTE
allocation below.

PTE Allocation: Figure 12 shows the PTE page allocation
flow of the Linux kernel using DPT. In conventional Linux,
PTE pages are not allocated when creating a new Virtual Mem-
ory Area (VMA) as it uses the demand allocation scheme [20].
However, DPT needs to allocate the PTE pages when creating
a VMA to use the CVA technique. To this end, we implement
the PTE allocation in the get unmapped area() that creates a
new VMA and returns the VMA address.

To allocate a PTE page, DPT calculates a base PFN for the
given virtual address by using a hash function (❶). Then, DPT
applies the SOA with the base PFN to find a physical frame
that is free (❸) and resides within a fragmented region (❹).
During this process, the PageBuddy() and compound order()
functions are used. Upon success in finding the physical
frame, DPT allocates it to a new PTE page (❺). The SOA
parameters (step and stride) corresponding to the physical
frame are stored in the DMT, and the PTE is initialized us-
ing ptep set access flags(). After that, the allocated physical
frame is deleted from the free list of the buddy allocator by
using del page from free list() (❺).

When SOA fails to find a suitable physical frame with the
allowed step and stride values (❷), it adds physical frames
to a candidate list using list add() (❻). At this stage, a
physical frame allocated to a migratable page and a free frame
residing within the unfragmented region can be considered
as a candidate frame. If SOA fails, the CVA technique is
employed to find a collision-free VMA (❼). When the CVA
operation reaches its limit (i.e., MAX CVA CNT), a victim
frame is selected from the candidate list (❽). The choice of
the victim frame depends on system priorities. If performance
is prioritized over memory fragmentation, a free frame within
an unfragmented region is selected to avoid data migration.
In this case, a large physical memory region is split into
smaller regions using the expand() function (❾). Otherwise,
if memory fragmentation is a critical concern, a frame already
allocated to a page will be selected as the victim. Then, the
CPD technique migrates the page to another free frame using
the migrate pages() function (❿).

F. Supporting Virtualization

In a virtualized environment, address translation involves
two steps: first, translating the guest virtual address (gVA) to
a guest physical address (gPA) and then translating the gPA
to the host physical address (hPA). With a 4-level page table,
this process requires up to 24 memory accesses [48], [57].
DPT can significantly reduce the address translation overhead
as it only requires two memory accesses for the translation
(one for gVA-to-gPA mapping and another for gPA-to-hPA).
Consequently, DPT can access the data page with up to three
memory accesses in the virtualized environment.

The DPT can be implemented in both a guest OS and a
host OS. In a virtualized environment, the guest OS assigns a
unique guest PID (gPID) to each process running within the
guest. DPT utilizes this gPID to perform address translation
within the guest OS, converting a gVA to a gPA. Since the gPA
is still a virtual address from the host’s perspective, additional
translation is needed to map the gPA to a hPA. This second
translation stage is managed by the host OS, which assigns
a unique host PID (hPID) to each virtual machine. DPT uses
the hPID to perform the host-level translation, ensuring that
the gPA is accurately mapped to the hPA.

VIII. EXPERIMENTAL EVALUATIONS

A. Experimental Methodology

Simulated System: We evaluate our proposed DPT using
the Sniper multi-core simulator [12] extended to include
page table walker, page walk cache, memory allocator, and
large page support. To simulate the system overheads, we
incorporate data migrations and page fault handling latencies,
which are obtained from a real system, into the simulator. We
compare DPT against several techniques, including the con-
ventional RPT, the state-of-the-art HPT called ME-HPT [56],
and the latest large-coverage TLB called MOSAIC [21].
Table I describes the simulated system configuration used
in our evaluation. We conduct trace-based simulations for
multi-programmed workloads on a 4-core configuration. In the
default simulation setup, the memory allocator is configured
with an initial capacity utilization of 70%, meaning that 70%
of the memory space is pre-allocated.

Real System: We demonstrate the feasibility of DPT by im-
plementing its page table allocation mechanisms in the Linux
kernel 5.11 running on a real server equipped with an Intel i9-
11900 processor at 2.5GHz and 128GB DDR4-3200 DRAM.
Using this prototype, we analyze the frequency of address
collisions in DPT and measure the memory fragmentation
rates, page fault overheads, and data migration overheads.

Workloads: Table II shows the workloads used in our
experiments. Consistent with prior works [32], [33], [55], [56],
we select memory-intensive workloads with irregular memory
access patterns and a high L2 TLB MPKI (greater than 6.5).
These workloads are chosen from diverse benchmark suites,
including GraphBIG [41], GenomicsBench [58], HPCC [38],
XSBench [61], and Sparse Length Sum from DLRM [42].

44

TABLE I: Simulated System Configuration

Component Parameter
CPU 4-way Out of Order, 2.66GHz

L1 ITLB 64-entry, 8-way, 1-cycle

L1 DTLB 4KB page: 64-entry, 4-way, 1-cycle
2MB page: 32-entry, 4-way, 1-cycle

L2 TLB 1,536-entry, 12-way, 8-cycle
Page Walk 3-level split PWC, 4-way; PGD: 16-entry;

Cache PUD: 16-entry; PMD: 32-entry; 2-cycle
L1 I/D-cache 32KB, 4-way, LRU, 4-cycle

L2 Cache 512KB, 16-way, LRU, 16-cycle
LLC 8MB, 16-way, LRU, 36-cycle

DRAM 16GB, DDR4-3200, 45ns latency; Capacity utilization: 70%

MOSAIC [21] MOSAIC-8 TLB model

ME-HPT [56]

Supported page size: 4KB, 2MB
128-entries/way, 4-way for each page size
Cuckoo Walk Cache: 16-entry each, 2-cycle
Cuckoo Walk Table : 128 entries × 2 ways each
Occupancy: 0.6; Chunk sizes: 8KB, 1MB
L2P table size: 32-entry, 4-way
Hash function: CITY [19], 2-cycle

DPT

Supported page size: 4KB, 2MB
Hash function: CITY, 2-cycle
MAX SOA STEP: 4; MAX CVA CNT: 4
2M-DMT: 4096 entries; 4K-DMT: 8192 entries
2M-DMC: 16-entry, 2-cycle, 4-way
4K-DMC: 32-entry, 2-cycle, 4-way
Migration latency: 1100-cycle «

2x(tRCD+tCL/tCWL+tBURSTx64+tRTP+tRP)
TLB shootdown latency: 6.6 µs [34]

TABLE II: Workloads

Suite Workloads Input size
GraphBIG [41] Betweeness Centrality (BC), Breadth-

first search (BFS), Connected com-
ponents (CC), Graph coloring (GC),
PageRank (PR), Triangle counting (TC),
Shortest-path (SSSP)

8GB

GenomicsBench [58] K-length substring of DNA sequence
counting (GEN)

33GB

HPCC [38] Giga updates per second (RND) 10GB
XSBench [61] Monte Carlo neutron transport (XS) 9GB
DLRM [42] Sparse-length sum (DLRM) 10.3GB

B. Overall Performance

Speedup: Figure 13 compares the performance improve-
ment of DPT with RPT, ME-HPT, and MOSAIC. On average,
DPT achieves a speedup of 12.6% compared to the conven-
tional RPT. Against the state-of-the-art techniques, MOSAIC
and ME-HPT, DPT delivers average performance improve-
ments of 11.6% and 8.7%, respectively.

As the TLB size increases, the advantage of using DPT
diminishes because TLB misses become less frequent. How-
ever, even with a large TLB, workloads with irregular memory
access patterns and large working sets can still experience
frequent page walks. In Figure 13, MOSAIC shows negligible
speedup compared to RPT and ME-HPT. This is attributed to

1.33

Fig. 13: Performance of RPT, ME-HPT, MOSAIC, DPT and
DPT+MOSAIC (normalized to the RPT).

Fig. 14: Address translation latency (normalized to the RPT).

the irregular memory access patterns and high TLB MPKI of
the selected workloads. While increasing TLB coverage can
be an easy and effective approach, this experimental result
highlights the need for fundamental solutions to address page
walks. Additionally, since DPT does not modify the TLB
architecture, it is complementary to the techniques aimed at
enhancing TLB coverage.

Translation Latency: In Figure 14, we compare the ad-
dress translation latency across competitive mechanisms. DPT
shows the lowest address translation latency. Compared to
RPT, MOSAIC, and ME-HPT, DPT reduces the latency by
55.4%, 51.8%, and 34.2%, respectively. These improvements
are achieved by reducing page walks compared to RPT-
based multi-level memory accesses and by avoiding multi-way
memory accesses involved in ME-HPT.

C. Memory Subsystem Characterization

Cache MPKI: Figure 15 shows the normalized Misses Per
Kilo Instruction (MPKI) of the level-2 cache (L2C) and the
last-level cache (LLC) across the competitive mechanisms.
Compared to RPT, DPT reduces the MPKI by 14.7% for L2C
and 14.8% for LLC. RPT and MOSAIC experience higher
cache MPKI because page walks access the caches at each
level of the radix-tree page table, causing more cache block
replacements. In contrast, DPT and ME-HPT typically require
only a single memory access for the address translation,
resulting in fewer cache misses than RPT. However, ME-
HPT’s need for parallel accesses across multiple HPT ways,
along with PTE migration through cuckoo hashing, can pollute
the caches by loading unnecessary PTEs. The PTE migrations
also lead to invalid PTEs being accessed due to coherence
issues in the MMU cache (i.e., CWC), resulting in additional
memory accesses. Since DPT resolves the address collisions
without PTE migrations by utilizing SOA and CVA, it has a
relatively small impact on the MPKI of the caches.

Fig. 15: MPKI of caches (normalized to the RPT).

45

RPT

ME-HPT DPT

Fig. 16: Breakdown of the servicing location of memory requests
that fetch translation information (normalized to the RPT).

Breakdown of Memory Requests: Figure 16 shows the
breakdown of memory requests involved in the address trans-
lation for different page table structures. This figure demon-
strates that ME-HPT increases memory requests involved
in the address translation, whereas DPT reduces them. On
average, ME-HPT results in a 25.8% increase in memory
requests compared to RPT, whereas DPT achieves a 43.5%
reduction. ME-HPT’s higher request count is due to parallel
requests and cuckoo hashing. Additionally, the repetitive PTE
migrations pollute the caches as unnecessary data is loaded
into them. Consequently, approximately 65% of ME-HPT’s
requests are loaded from the main memory (DRAM).

In contrast, DPT reduces memory requests by eliminating
both sequential access for multi-level translation (involved in
RPT) and parallel accesses for multi-way lookups (involved in
HPT). Furthermore, DPT maintains valid address translations
in the DMC, as PTE pages remain unmovable. DPT predom-
inantly retrieves translation information from the L2 cache,
with relatively lower retrieval rates from the main memory
(DRAM) and LLC. This result highlights that DPT effectively
stores translation information without causing cache pollution.

D. Effectiveness of DPT Components

DPT Metadata Cache: As described in Section VII, DPT
stores the SOA parameters (i.e., stride and step) in the
DPT Metadata Table (DMT). Since the DMT is stored in
memory, DPT employs the DPT Metadata Cache (DMC) to
hold recently used metadata, reducing the need for frequent
memory accesses to the DMT. During program execution,
DPT can retrieve the metadata from the DMC, on-chip caches
(L1/L2/LLC), or off-chip memory (DRAM). Figure 17 illus-
trates the latency associated with fetching DPT metadata from
these storage components. In the figure, ALLOC represents
the cases where the metadata is not available in the DMT.

As described in Section VII-A, one PTE page can be
represented by 6-bit SOA parameter. A cache line in the DMC

DMC DRAML1 L2 LLC ALLOC

Fig. 17: Latency breakdown by hit location for DPT Metadata.

2: 4 6 8
 MAX_SOA_STEP

Fig. 18: The number of data migrations in DPT using SOA
and using SOA+CVA (normalized to the DPT using SOA with a
MAX SOA STEP of 2).

can hold multiple SOA parameters, thus providing extensive
virtual address coverage. Consequently, as shown in Figure 17,
approximately 75.8% of the metadata fetch latency originates
from the DMC, with the remainder primarily coming from
the L2 cache. Even if a metadata fetch request misses in the
DMC, the latency remains relatively low because the required
metadata can still be retrieved from the cache hierarchy.

SOA and CVA: Figure 18 shows how SOA and CVA
techniques impact the number of data migrations. The effects
of these techniques are compared for various SOA parameters.
All results are normalized to the SOA with a MAX SOA STEP
of 2. The hatched bars in the figure represent the number of
data migrations when using only SOA in the DPT. For all
workloads, the number of data migrations decreases as the
MAX SOA STEP increases. Specifically, compared to SOA
with the MAX SOA STEP of 2, the data migrations are
reduced by 8%, 19%, and 26% with MAX SOA STEP of 4,
6, and 8, respectively.

The black bars represent the number of data migrations
when DPT uses both SOA and CVA. The addition of CVA sig-
nificantly reduces the data migrations. Specifically, compared
to using only SOA, the use of SOA+CVA reduces the number
of data migrations by 25% on average when MAX SOA STEP
is configured to 8.

DPT’s SOA effectively avoids address collisions but re-
quires repeated checks of the frame bitmap (struct page in
Linux) to find a free physical frame. Figure 19 shows the
overhead of SOA in a real system. As shown in the figure,
the performance impact of repetitive search of the SOA is
negligible. This is because this process involves accessing a
small structure that is typically cached.

E. Additional Analysis

Memory Fragmentation: Figure 20 shows the impact
of DPT with FAP on memory fragmentation, measured by

of SOA: 0 1 78....

Fig. 19: Performance overhead of the strided search of SOA in Linux
system. ‘GRAPH’ represents the average of experimental results
across all GraphBIG workloads.

46

N
or

m
al

iz
ed

 R
at

io
of

 2
M

B
 F

re
e

Pa
ge

s

Fig. 20: Ratio of free contiguous 2MB pages after workload com-
pletion (normalized to the RPT).

the number of free contiguous 2MB pages after workload
completion. The figure shows that DPT maintains a similar
number of free 2MB pages compared to RPT, whereas ME-
HPT experiences a significant reduction in the free 2MB pages.
On average, DPT reduces free 2MB pages by 3% compared
to RPT, whereas ME-HPT experiences a 47% reduction.

Data Migration: Figure 21 compares the frequency of data
migrations. In this experiment, we vary the initial memory
capacity utilization to accelerate data migrations caused by
address collisions. “Sniper” refers to the simulated system,
while “Linux” denotes the real system. As memory utilization
increases, the data migrations per page allocation slightly
increase. Even in the worst-case scenario (90% memory uti-
lization), the migration rate of DPT remains below 0.0007 in
both simulated and real systems, which is negligible compared
to ME-HPT (shown in Figure 3). Applying FAP, which sig-
nificantly reduces the memory fragmentation, leads to a slight
increase in the migration rate due to more conservative PTE
page allocation. Nonetheless, even at 90% memory utilization,
FAP increases the migration rate by only 0.0002 in both the
simulated and real systems.

Performance Impact of Memory Utilization: We conduct
experiments to evaluate the performance improvement of DPT
over RPT for various memory utilization. Figure 22 shows
the experimental results for five different utilization levels.
As shown in the figure, the performance gain remains stable
up to around 80% utilization, with a slight drop at 90%. At
an extreme memory utilization level (98%), the performance
declines by approximately 3.3%. As memory utilization in-
creases, the frequency of address collisions also rises. How-
ever, this increase in collisions does not lead to allocation
failures because PTE allocation can still be successful through
SOA and CVA mechanisms. If the PTE allocation fails within
the allowed iterations for SOA and CVA, CPD can be triggered
to resolve the collisions by migrating a data page. At 98%

D
at

a
M

ig
ra

tio
ns

 p
er

Pa
ge

 A
llo

ca
tio

n
(D

M
PA

)

Li
nu

x
Li

nu
x-

FA
P

Sn
ip

er
-F

A
P

Sn
ip

er

Fig. 21: Data migrations per page allocation for the DPT in
the simulated system and the real system across various memory
utilization levels. ‘GRAPH’ represents the average of experimental
results across all GraphBIG workloads.

Fig. 22: Performance improvement of DPT over RPT for variable
memory utilization levels.

utilization, CPD occurs 13.4ˆ more frequently than at 70%
utilization, resulting in performance degradation due to TLB
shootdown during the page migration. However, this overhead
occurs only during page faults, specifically when allocating
PTEs, and not during every PTE lookup.

Although high memory utilization can reduce the perfor-
mance improvement of DPT, this does not significantly limit
the effectiveness of DPT in practice. In conventional operating
systems, searching or compacting contiguous memory space is
often necessary when allocating memory. If the memory usage
is significantly high, however, it is challenging to perform
these operations. Therefore, memory utilization needs to be
maintained at an appropriate level. Recent studies indicate that
memory capacity utilization in HPC systems is generally low
(less than 35% for 90% of the system running time [16],
[45], [49], [50]). Additionally, the Linux system defines
vm.swappiness parameter for the memory swap mechanisms
which controls the tendency of the kernel to swap memory
pages. A vm.swappiness value of 60 (the default) balances
between swapping and caching.

Performance for System with THP: Figure 23 compares
the performance of MOSAIC, ME-HPT, and DPT with RPT
for the system using the Transparent Huge Page (THP) [5].
MOSAIC achieves a minor performance improvement as the
baseline TLB also performs well with the large page sup-
port, while ME-HPT and DPT improve the performance by
3.3% and 11.2%, respectively. ME-HPT performs similarly
to DPT in some workloads but underperforms in others due
to its maintenance of different page tables for varying page
sizes, which affects the total page table access count. DPT
experiences a slight reduction in performance improvement
compared to using only base pages, which is attributed to
increased TLB coverage with the large page support. Nev-
ertheless, DPT remains effective for the system with THP as
it efficiently handles various page sizes.

Fig. 23: Performance comparison for the system with THP [5]
(normalized to the RPT).

47

IX. CONCLUSION

In this paper, we proposed a new page table structure
called the Distributed Page Table (DPT) as a novel approach
to overcome the limitations of HPTs. The main idea in
DPT’s approach is to utilize the entire physical memory space
using a hash function to eliminate the need to prepare a
large contiguous physical memory space, a limitation faced
by state-of-the-art HPT techniques. To handle the issue of
potential collisions in DPT, we introduced three novel tech-
niques - SOA, CVA, and CPD. Additionally, PTE Pooling
(PTP) was designed to reduce collisions, and Fragmentation-
Aware PTE Allocation (FAP) was employed as an additional
optimization technique to reduce fragmentation. We verified
the effectiveness of DPT’s approach by seamlessly integrating
it into current virtual memory systems and conducting various
performance measurements. DPT delivered performance im-
provements of 12.6%, 11.6%, and 8.7% over traditional RPT,
the latest large-coverage TLB technique, and state-of-the-art
HPTs, respectively.

ACKNOWLEDGMENT

The authors would like to thank Dr. Eun Kyung Lee
from IBM and the anonymous reviewers for their valuable
feedback in improving the quality of this paper. This work
was partly supported by the National Research Founda-
tion of Korea (NRF) grant (No.2022R1C1C1012154, 60% /
No.2021R1A5A1021944, 20%), Institute of Information &
communications Technology Planning & Evaluation (IITP)
grants funded by the Korea government (MSIT) (No.2022-
0-01170, 10% / No.2021-0-00863, 10%). Seokin Hong is the
corresponding author.

REFERENCES

[1] E. Abrossimov, M. Rozier, and M. Shapiro, “Generic virtual memory
management for operating system kernels,” in Proceedings of the twelfth
ACM symposium on Operating systems principles, 1989, pp. 123–136.

[2] AMD, AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, AMD, 2023.

[3] B. S. An, M. H. Cha, S.-M. Lee, W. H. Yang, and H. Y. Kim, “Providing
scalable single-operating-system numa abstraction of physically discrete
resources,” ETRI Journal, 2024.

[4] A. W. Appel and K. Li, “Virtual memory primitives for user programs,”
in Proceedings of the fourth international conference on Architectural
support for programming languages and operating systems, 1991, pp.
96–107.

[5] A. Arcangeli, “Transparent hugepage support,” in KVM forum, vol. 9,
2010.

[6] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: skip, don’t
walk (the page table),” ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, pp. 48–59, 2010.

[7] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 237–248. [Online]. Available: https://doi.org/10.1145/248592
2.2485943

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIII.
New York, NY, USA: Association for Computing Machinery, 2008, p.
26–35.

[9] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, pp. 383–394.

[10] ——, “Translation-triggered prefetching,” in Proceedings of the Twenty-
Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2017, pp. 63–76.

[11] M. J. Bligh and D. Hansen, “Linux memory management on larger
machines,” in Proc. Linux Symposium, 2003.

[12] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[13] I. T. Community, “Systems and architectures - international roadmap for
devices and systems (irds),” 2022.

[14] J. Corbet. (2010) Memory compaction. [Online]. Available: https:
//lwn.net/Articles/368869/

[15] ——, “Concurrent page-fault handling with per-vma locks,” 2022.
[Online]. Available: https://lwn.net/Articles/906852/

[16] R. S. S. Dittakavi, “Deep learning-based prediction of cpu and memory
consumption for cost-efficient cloud resource allocation,” Sage Science
Review of Applied Machine Learning, vol. 4, no. 1, pp. 45–58, 2021.

[17] C. Dougan, P. Mackerras, and V. Yodaiken, “Optimizing the idle task
and other mmu tricks,” in OSDI, 1999, pp. 229–237.

[18] S. Eranian and D. Mosberger, “The linux/ia64 project: kernel design
and status update,” HP LABORATORIES TECHNICAL REPORT HPL,
vol. 85, 2000.

[19] Google, CITY Hash, Google, 2012.
[20] M. Gorman, Understanding the Linux virtual memory manager. Pren-

tice Hall Upper Saddle River, 2004.
[21] K. Gosakan, J. Han, W. Kuszmaul, I. N. Mubarek, N. Mukherjee,

K. Sriram, G. Tagliavini, E. West, M. A. Bender, A. Bhattacharjee
et al., “Mosaic pages: Big tlb reach with small pages,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, 2023, pp.
433–448.

[22] G. Hoang, C. Bae, J. Lange, L. Zhang, P. Dinda, and R. Joseph, “A
case for alternative nested paging models for virtualized systems,” IEEE
Computer Architecture Letters, vol. 9, no. 1, pp. 17–20, 2010.

[23] J. Huck and J. Hays, “Architectural support for translation table man-
agement in large address space machines,” in Proceedings of the 20th
annual international symposium on computer architecture, 1993, pp.
39–50.

[24] IBM, PowerPC Microprocessor Family: The Programming Environ-
ments Manual for 64 and 32-Bit Microprocessors, IBM, 2003.

[25] Intel, TLBs, Paging-Structure Caches, and Their Invalidation, Intel,
2008.

[26] ——, Intel Itanium Architecture Software Developer’s Manual, Volume
2, Intel, 2010.

[27] ——, Intel 64 and IA-32 Architectures Developer’s Manual, Volume 3,
Intel, 2016.

[28] ——, 5-Level Paging and 5-Level EPT, Intel, 2017.
[29] ——, “Sunny cove microarchitecture,” 2018. [Online]. Available:

https://en.wikichip.org/wiki/intel/microarchitectures/sunny cove
[30] S. Jang, J. Park, O. Kwon, Y. Lee, and S. Hong, “Rethinking page

table structure for fast address translation in gpus: A fixed-size hashed
page table,” in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2024.

[31] J. Jann, P. Mackerras, J. Ludden, M. Gschwind, W. Ouren, S. Jacobs,
B. F. Veale, and D. Edelsohn, “Ibm power9 system software,” IBM
Journal of Research and Development, vol. 62, no. 4/5, pp. 6–1, 2018.

[32] K. Kanellopoulos, R. Bera, K. Stojiljkovic, F. N. Bostanci, C. Firtina,
R. Ausavarungnirun, R. Kumar, N. Hajinazar, M. Sadrosadati, N. Vi-
jaykumar et al., “Utopia: Fast and efficient address translation via
hybrid restrictive & flexible virtual-to-physical address mappings,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, 2023, pp. 1196–1212.

[33] K. Kanellopoulos, H. C. Nam, N. Bostanci, R. Bera, M. Sadrosadati,
R. Kumar, D. B. Bartolini, and O. Mutlu, “Victima: Drastically in-
creasing address translation reach by leveraging underutilized cache
resources,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 1178–1195.

[34] M. K. Kumar, S. Maass, S. Kashyap, J. Veselỳ, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna, “Latr: Lazy translation coherence,”

48

in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2018, pp. 651–664.

[35] O. Kwon, Y. Lee, and S. Hong, “Pinning page structure entries to
last-level cache for fast address translation,” IEEE Access, vol. 10, pp.
114 552–114 565, 2022.

[36] ——, “Virtual pte storage: Repurposing last-level cache to accelerate
address translation for big data workloads,” in 2022 IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE, 2022,
pp. 1–5.

[37] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321–359, 1989.

[38] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lu-
cas, R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, vol. 213, no. 10.1145, 2006, p. 1.

[39] Z. Ma, Y. Tan, H. Jiang, Z. Yan, D. Liu, X. Chen, Q. Zhuge, E. H.-
M. Sha, and C. Wang, “Unified-tp: A unified tlb and page table
cache structure for efficient address translation,” in 2020 IEEE 38th
International Conference on Computer Design (ICCD). IEEE, 2020,
pp. 255–262.

[40] D. McCracken, “Object-based reverse mapping,” in Linux Symposium,
2004, p. 357.

[41] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
understanding graph computing in the context of industrial solutions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[42] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

[43] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[44] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 679–692.

[45] G. Panwar, D. Zhang, Y. Pang, M. Dahshan, N. DeBardeleben, B. Ravin-
dran, and X. Jian, “Quantifying memory underutilization in hpc systems
and using it to improve performance via architecture support,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 821–835.

[46] A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis, and A. Bi-
las, “Optimizing memory-mapped tI/Ou for fast storage devices,” in
2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020,
pp. 813–827.

[47] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh,
“Perforated page: Supporting fragmented memory allocation for large
pages,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020, pp. 913–925.

[48] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Every
walk’sa hit: making page walks single-access cache hits,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 128–141.

[49] I. Peng, I. Karlin, M. Gokhale, K. Shoga, M. Legendre, and T. Gamblin,
“A holistic view of memory utilization on hpc systems: Current and
future trends,” in The International Symposium on Memory Systems,
2021, pp. 1–11.

[50] I. Peng, R. Pearce, and M. Gokhale, “On the memory underutilization:
Exploring disaggregated memory on hpc systems,” in 2020 IEEE 32nd
International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD). IEEE, 2020, pp. 183–190.

[51] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black,
W. Bolosky, and J. Chew, “Machine-independent virtual memory man-
agement for paged uniprocessor and multiprocessor architectures,” in
Proceedings of the second international conference on Architectual
support for programming languages and operating systems, 1987, pp.
31–39.

[52] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking tlb designs
in virtualized environments: A very large part-of-memory tlb,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 469–480,
2017.

[53] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J.
Kistler, “Lightweight recoverable virtual memory,” ACM Transactions
on Computer Systems (TOCS), vol. 12, no. 1, pp. 33–57, 1994.

[54] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch et al.,
“Rowclone: Fast and energy-efficient in-dram bulk data copy and ini-
tialization,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, 2013, pp. 185–197.

[55] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic cuckoo page
tables: Rethinking virtual memory translation for parallelism,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp.
1093–1108.

[56] J. Stojkovic, N. Mantri, D. Skarlatos, T. Xu, and J. Torrellas, “Memory-
efficient hashed page tables,” in 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 2023,
pp. 1221–1235.

[57] J. Stojkovic, D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Parallel
virtualized memory translation with nested elastic cuckoo page tables,”
in Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2022, pp. 84–97.

[58] A. Subramaniyan, Y. Gu, T. Dunn, S. Paul, M. Vasimuddin, S. Misra,
D. Blaauw, S. Narayanasamy, and R. Das, “Genomicsbench: A bench-
mark suite for genomics,” in 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2021,
pp. 1–12.

[59] M. Talluri, M. D. Hill, and Y. A. Khalidi, “A new page table for 64-bit
address spaces,” in Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, 1995, pp. 184–200.

[60] C. Tirumalasetty, C. C. Chou, N. Reddy, P. Gratz, and A. Abouelwafa,
“Reducing minor page fault overheads through enhanced page walker,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 19, no. 4, pp. 1–26, 2022.

[61] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “Xsbench-the de-
velopment and verification of a performance abstraction for monte carlo
reactor analysis,” The Role of Reactor Physics toward a Sustainable
Future (PHYSOR), 2014.

[62] H. Wang, J. Zhang, S. Shridhar, G. Park, M. Jung, and N. S. Kim,
“Duang: Fast and lightweight page migration in asymmetric memory
systems,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2016, pp. 481–493.

[63] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 331–345.

[64] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss, “Cramm: Virtual
memory support for garbage-collected applications,” in Proceedings of
the 7th symposium on Operating systems design and implementation,
2006, pp. 103–116.

[65] I. Yaniv and D. Tsafrir, “Hash, don’t cache (the page table),” ACM
SIGMETRICS Performance Evaluation Review, vol. 44, no. 1, pp. 337–
350, 2016.

[66] K. Zhao, K. Xue, Z. Wang, D. Schatzberg, L. Yang, A. Manousis,
J. Weiner, R. Van Riel, B. Sharma, C. Tang et al., “Contiguitas: The
pursuit of physical memory contiguity in datacenters,” in Proceedings
of the 50th Annual International Symposium on Computer Architecture,
2023, pp. 1–15.

49

