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Abstract—A unified address space is vital for heterogeneous
systems as it enables efficient data sharing between CPUs and
GPUs. However, GPU address translation faces challenges due
to high TLB pressure, particularly with irregular and memory-
intensive applications. Compared to an ideal scenario, we observe
that address translation overheads cause a slowdown of up to
34.5% in modern heterogeneous systems.

This paper introduces Avatar, a novel framework to accel-
erate address translation in GPUs. Avatar comprises two key
components: Contiguity-Aware Speculative Translation (CAST)
and In-Cache Validation (CAVA) mechanisms. Avatar identifies
the potential for predicting virtual-to-physical address mapping
by monitoring contiguous pages that lie in both virtual and
physical address spaces. Leveraging this insight, CAST specu-
latively translates virtual addresses into physical addresses. This
speculative address translation enables immediate data fetching
into GPUs while addressing translation occurs in the background,
reducing TLB-miss overhead.

Unfortunately, modern GPUs lack support for speculative
execution, which limits CAST’s performance gain. Data fetched
from speculated physical addresses is unusable until validation.
CAVA addresses this limitation by quickly validating speculated
physical addresses. To this end, CAVA embeds page mapping
information into each 32B sector of 128B cache lines. Thus, CAVA
enables fetching a sector block from memory for a speculated
address and rapidly validating the speculative translation using
the embedded mapping information. Our experiments show
that Avatar achieves a 90.3% (high) speculation accuracy and
improves GPU performance by 37.2% (on average).

Index Terms—GPU, virtual memory, address translation, spec-
ulation, data compression

I. INTRODUCTION

The GPU community has become increasingly interested

in virtual memory support in recent years. This interest is

primarily driven by the need for seamless data sharing and ef-

ficient memory management in CPU-GPU systems [60], [61].

One notable technique in this area is Unified Virtual Memory

(UVM) [3], [4], [50]. UVM creates a unified address space

accessible by both CPU and GPU, simplifying programming

by eliminating manual data copying between heterogeneous

compute units and enabling GPU memory oversubscription.

Address translation poses a significant challenge for virtual

memory support. This process often involves traversing multi-

level TLBs (Translation Lookaside Buffers) or walking a
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Fig. 1: The latency of page walks on memory access latency in
commodity GPUs [48], [53], [54]. On average, by using micro-
benchmarks, we see that commodity GPUs have up to 1.96× higher
memory access latency (nearly 1000 cycles) due to page walks.

multi-level page table when TLB misses occur, resulting in

substantial memory access delays [12], [27], [28], [36], [67],

[68]. As depicted in Figure 1, this challenge is particularly

pronounced in commodity GPUs, where numerous threads

concurrently generate memory requests requiring address

translation. Our observations indicate that commodity GPUs

can experience up to 1.96× higher memory access latency

(nearly 950 cycles) due to page walks. Compounding the issue,

the GPU pipeline frequently stalls if its TLBs cannot handle

these translation requests. Given the simultaneous translation

requests from a significant number of threads, GPUs cannot

mitigate this prolonged memory access latency using thread-

level parallelism [9], [67].

GPU Address Translation – Challenges and Solutions:

Prior work have explored techniques to enhance address

translation in GPUs [7], [9], [18], [26], [35], [37], [39]–[41],

[62], [63], [67], [68], [78]. These efforts generally focus on

two approaches. The first approach aims to improve page

walk performance to reduce TLB miss penalties [18], [40],

[62], [67], [68]. The second approach seeks to increase TLB

reach using large page utilization [7], TLB coalescing [37],

or resource optimization [25], [35]. While effective, these

approaches do not completely eliminate address translation

overhead from the memory access path.

Increasing the reach of TLBs helps minimize translation

overheads. This is because they tend to increase the lookups

that result in TLB hits. We observed that, without these trans-
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lation overheads, one can achieve an ideal speedup of 53%.

However, prior works such as Page Promotion [7], CoLT [58],

and SnakeByte [37] achieve speedups of 22.2%, 27.6%, and

21.8% – short of the ideal attainable speedup. We expect this

difference between ideal and achievable speedup to increase

as memory sizes increase. This is because the overheads of

prior work are tied to the memory capacity. A key feature of

UVM is to enable GPUs to over-subscribe memory allocation

to have access to large host memories. Thus, it would be useful

to develop a new scheme that completely conceals the address

translation overheads to make them amenable to memory over-

subscription. In practice, this scheme should be independent

of TLB designs and page walk systems.

Accelerated Address Translation in GPUs: This paper in-

troduces Avatar (Accelerated Virtual Address Translation with

Address Speculation and Rapid Validation), a framework for

reducing address translation overhead on GPUs. Avatar com-

prises two components: Contiguity-Aware Speculative Trans-

lation (CAST) and In-Cache Validation (CAVA). Broadly, it

uses insights from inverted page tables and compression [23],

[24] to store virtual translations on physical pages.

CAST leverages page continuity and spatial locality in GPU

accesses. Page continuity implies that contiguous pages in

the virtual address space are also contiguous in the phys-

ical address space – a typical behavior in several memory

allocation strategies for GPUs [3], [4], [32]. CAST tracks

this contiguity in a chunk by exploiting spatial locality in

GPU memory requests. When a TLB miss occurs, CAST

speculates a physical address for a given virtual address,

enabling immediate physical memory access. Simultaneously,

CAST initiates an address translation to obtain the accurate

address mapping for the missed virtual address on the TLB.

However, GPUs lack support for speculative execution.

Thus, they cannot use the data fetched from speculated phys-

ical addresses until the speculation is confirmed. This limits

the potential performance gains of CAST. To overcome this,

Avatar augments CAST with CAVA, an address validation

mechanism that rapidly verifies speculative address transla-

tions. CAVA attempts to compress each 32B sector of the 128B

cache lines to 22 bytes for the data located in GPU memory

by leveraging memory compression opportunities in modern

GPU workloads [15], [33]. It does so by reallocating a portion

of the remaining space (10 bytes) to store address mapping

information, including the virtual page number (VPN). When

the sector fetched from a speculated physical address is

compressed and contains the mapping information, CAVA

validates the address speculation by directly comparing the

VPN embedded within the fetched data with the requested

virtual address. This rapid validation enables GPU cores to

use the data fetched by CAST immediately.

In rare cases where the data sectors are uncompressible,

or CAST mispredicts, Avatar reverts to the baseline strategy

of obtaining the address mapping information through slower

page walks. We show that Avatar effectively conceals the

overall memory latency 44.5% of the time and enhances

GPU performance by 37.2%. Moreover, Avatar requires simple

changes, incurring low-cost overheads that do not scale with

memory sizes. Also, as Avatar always checks for the embedded

VPN and uses it to match with the requested VPN, it does not

affect the correctness of the page translation process.

Contributions: This paper makes four key contributions:

• GPU-Based Speculative Address Translation: We propose

Avatar, a low-cost framework that enables GPUs and CPUs

to share the unified virtual address space while using spec-

ulative address translation without affecting correctness.

• Exploiting Data Mapping: We propose CAST, a mech-

anism that leverages page continuity and spatial locality

within GPU accesses. By exploiting these properties, CAST

enables immediate physical memory access, thus reducing

latency associated with address translation.

• Exploiting Data Content: We propose CAVA, a rapid

validation mechanism to use the data fetched from the

speculated physical address once it is loaded into the on-chip

cache to verify the speculated address. To this end, CAVA

compresses data sectors and embeds the page translation

information within 32-byte data sectors.

• Repurposing Retrieved Translation: We also show that,

once speculation is confirmed using CAVA, it can be repur-

posed for additional performance enhancements.

Our experiments show that Avatar achieves an average

speedup of 37.2% while providing 90.3% speculative address

translation accuracy.

II. BACKGROUND AND MOTIVATION

A. Baseline GPU Architecture

Figure 2a illustrates the baseline GPU architecture based on

a disclosed NVIDIA design1 [49]. A discrete GPU connects

to the host (CPU) via PCIe or NVLink. It comprises multiple

streaming multiprocessors (SMs), each with compute cores.

Within an SM, a load/store unit handles memory accesses from

1We use NVIDIA’s terminology in this paper. However, our proposed
technique is general and applicable to other GPU architectures.
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multiple threads. Coalescers merge adjacent memory requests

to reduce traffic. Each SM has a private L1 cache, and all SMs

share L2 caches through an interconnect network. Modern

GPUs use a sector-based design for both L1 and L2 caches,

breaking cache lines into smaller sectors [1], [31], [72]. Each

sector can store a smaller part of the memory address space.

This design allows precise control over the data fetched and

stored in the cache.

B. Virtual Memory in GPUs

Address Translation Hierarchy: Enabling virtual memory

support in GPUs is challenging due to the high memory

bandwidth demands in parallel processing. To mitigate this,

GPUs use hierarchical address translation, such as multi-level

TLBs and a multi-threaded page walk system [62], [67], [68].

Figure 2b shows the address translation flow in the baseline

GPU architecture. The baseline employs a virtually indexed

physically tagged (VIPT) cache for the L1 cache. Initially, the

memory request searches the per-SM private L1 TLB and L1

cache concurrently (�). If there is a miss in the L1 TLB, the

request goes to the shared L2 TLB, which is accessible by all

SMs in the GPU (�). If the translation is not found there, it is

queued in the L2 TLB MSHR and PW buffer (�). A shared

and highly threaded page walk system handles the translation

request. When idle, a walker picks up a request from the PW

buffer (�). In a four-level page table, the walker accesses the

page table four times to obtain a page table entry (PTE) (�). A

PW cache stores recent page structure entries to speed up this

process. Once the translation is complete, the memory request

retries the lookup to find the required data (�).

Unified Memory: Modern GPU systems support a unified

virtual address space shared among the host CPU and other

GPUs, as seen in NVIDIA UVM [3], [4], [50]. This system

handles GPU page faults by dynamically allocating required

data pages on-demand [19], [65], [80]. The GPU starts the

address translation process when a global memory access is

made. The GPU Memory Management Unit (GMMU) triggers

a page fault if the corresponding PTE is missing or invalid.

Once the GPU Runtime resolves the fault, the requested page

is migrated from CPU to GPU memory.

C. Leveraging Page Contiguity in UVM environment

Page contiguity refers to the property where adjacent pages

(typically 4KB) in the virtual address space are also adjacent

in the physical address space. Various factors contribute to

page contiguity, including memory allocation strategies like

the buddy memory allocation in the Linux kernel [57]. In GPU

systems, the memory allocation strategy employed by runtime

systems such as NVIDIA’s CUDA Runtime plays a significant

role in promoting page contiguity.

In the UVM environment, the CUDA Runtime manages

memory in 2MB logical chunks to optimize memory allocation

and the page fault handling [3], [4], [32]. Page faults are

buffered and grouped into 2MB logical chunk regions based

on their virtual addresses. Each virtual 2MB logical chunk

reserves a corresponding physical 2MB logical chunk, and the

(a) Normalized stall cycles due to waiting for memory accesses. On
average, address translation leads to 1.7× more cycles as compared
to an ideal TLB baseline. In workloads like SSSP, SPMV, and XSB,
this can cause 2.08×, 2.15×, and 9.35× more cycles as compared
to an ideal baseline.

(b) Performance degradation due to the address translation. On
average, address translation leads to 34.5% decrease in performance
as compared to an ideal baseline. This overhead is only bound to
become worse with increasing memory sizes.

Fig. 3: Impact of address translation on GPU performance.

pages within the virtual chunk are migrated to the mapped

physical chunk. This allocation strategy, leveraging contiguity

within chunks, simplifies memory management while effec-

tively supporting other virtual memory techniques such as

page-size promotion and chunk-based page prefetching [3],

[19], [47], [65].

D. Address Translation: A Key Bottleneck

Despite leveraging page continuity, GPU systems with

UVM can experience significant slowdowns due to address

translation. GPUs achieve high throughput through multi-

threading, which effectively hides memory latencies. When

a warp (a basic unit of thread execution) stalls due to

long-latency memory operations, the warp scheduler quickly

switches to another ready warp with the help of low-cycle

context switching [44]. However, address translation adds

substantial latency in the memory operations, hindering the

warp scheduler’s ability to hide long memory latencies.

Figure 3a illustrates this impact, showing more frequent

SM stalls with the baseline TLB compared to an ideal TLB2.

This leads to significant performance degradation, especially

in workloads like SPMV, SSSP, and XSB, where SM stalls

are >2× compared to the ideal TLB scenario. This underuti-

lization of GPU cores reduces performance, as shown in Fig-

ure 3b, where the baseline performs 34.5% worse (on average)

than the ideal TLB configuration. Thus, mitigating address

translation overhead is key to improving GPU performance.

E. Rethinking Approaches that Exploit Large Pages and TLBs

Prior research has used the page contiguity to improve

performance in virtual memory environments across CPU and

GPU domains [5], [7], [10], [21], [29], [37], [56], [58], [59].

2The details about the simulation environment are described in Section IV
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TABLE I: Comparison with Prior Techniques Exploiting Page Contiguity.

Techniques Goal Approach Scalable No TLB changes
Supported
contiguity

Management
granularity for

contiguous regions

Where to store
contiguity info.?

Suitable for
oversubscription?

Mosaic [7] Increasing TLB reach Page promotion No No 4KB, 2MB
Coarse-grained

(2MB)
Page table No

CoLT [58] Increasing TLB reach TLB coalescing No No 4KB to 64KB
Coarse-grained

(64KB)
TLB No

SnakeByte [37] Increasing TLB reach
Page promotion +
TLB coalescing

No No 4KB to 8GB
Coarse-grained
(32KB to 8GB)

Page table +
TLB

No

Avatar
(Ours)

Reducing
TLB miss penalty

Speculative
address translation

Yes Yes No limit
Fine-grained

(4KB)
N/A Yes

However, some methods may not be suitable for discrete GPUs

due to reliance on frequent OS support [21], [29], [56], which

can degrade GPU performance. They may also rely on eager

paging [21], [29] which is incompatible with GPU demand

paging. This section focuses on GPU-compatible approaches.

Large Pages: Using larger page sizes significantly reduces ad-

dress translation overhead by improving TLB reach. However,

large pages increase internal fragmentation where a portion of

the large page is not used. Moreover, the direct adoption of

large pages in the UVM environment is impractical as each

page fault requires a 2MB migration, significantly increasing

demand paging overhead [3].

Page Promotion: An alternative approach to achieve the

benefit of the large page is page promotion [7], which increases

page size when all subpages in a logical chunk are valid. This

approach can increase the TLB reach while keeping demand

paging overhead low. However, it may not yield benefits until

small-size pages are promoted to larger ones. It may also

provide a small gain if the application only uses a partial set

of pages within the logical chunk without promotion.

TLB Coalescing: TLB coalescing [58] can be a favorable

approach to increase the TLB reach. This approach coalesces

multiple address mappings for contiguous pages into one TLB

entry. Figure 4 shows an example of TLB coalescing. To

compact such mappings, each TLB entry has multiple valid

bits to indicate the validity of particular pages within a set of

contiguous pages mapped to the same TLB entry. As shown

in the figure, a coalesced TLB can maintain the translation

information with a small number of TLB entries. However, the

address range covered by the coalesced TLB entry is limited

to a small set of contiguous pages [56].

Fig. 4: An example of TLB coalescing (left) and speculative address
translation (right).

Page Promotion with TLB Coalescing: Recent prior

work [37] synergistically combines the page promotion and the

TLB coalescing. In the proposed scheme, the contiguous pages

are promoted to various large-sized pages depending on the

page contiguity level. In addition, the translation information

for the enlarged pages is coalesced in each TLB entry. Even if

a coalesced entry can cover a larger contiguous memory region

in this approach, it requires additional memory references

(in-memory page table accesses) to maintain the contiguity

information in each page table entry and to merge small pages

into a larger one. The additional memory references may

decrease the performance gain if the page contiguity level is

not significantly high or the merged page is splintered back

into multiple small pages [7].

Common Limitations of Prior Techniques: Table I compares

the prior techniques exploiting the page contiguity. These

techniques have five common limitations.

Firstly, they are fundamentally limited in scalability as they

rely on the TLB to reduce the address translation overheads.

Even if these techniques increase TLB reach, their benefits

will be reduced as the workload’s working set size increases.

Secondly, all these techniques necessitate modifications in

TLB design, such as including the validity of contiguous

pages within a TLB entry or applying different TLB indexing

methods depending on the page size of the referenced ad-

dress. Given that the TLB, especially the L1 TLB, is on the

critical path, these modifications can potentially reduce the

performance of the GPU pipeline, a scenario that demands

immediate attention.

Thirdly, they support only a limited number of page conti-

guity. For example, Mosaic [7] only supports 4KB and 2MB

page sizes. Thus, this technique can not benefit the workloads

with intermediate level (e.g., 64KB-128KB) of page contiguity

as shown in Figure 5a.

Fourthly, page metadata (e.g., access and dirty bits) is

managed coarsely. For instance, when four pages are merged

into one TLB entry, their dirty bits are also combined into

a single bit, as illustrated in Figure 4 (left). This coarse

management can lead to inefficient memory operations, such

as unnecessary writebacks for clean 4KB pages. Moreover,

due to the page metadata, merging contiguous small pages

into a larger one can be challenging [8]. This issue can be

mitigated by increasing metadata bits in each TLB entry or by

immediately propagating metadata updates to the in-memory

page table in the background [8], [16]. However, the former

approach incurs extra hardware costs, which increase with the
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CoLT SBPromotion

(a) No oversubscription. (b) Oversubscription (130%).

Fig. 5: Coverage breakdown of accessed TLB entries. The memory
oversubscription scenario can reduce the effective TLB coverage of
the prior techniques due to frequent TLB shootdowns.

degree of coalescing, while the latter can introduce additional

memory references for updating the page table.

Finally, the benefits of the prior techniques can be reduced

in the memory oversubscription scenario. Memory oversub-

scription, a key feature of UVM, occurs when an application’s

working set exceeds GPU memory capacity, leading to multi-

ple page (chunk) evictions from GPU memory [11]. This evic-

tion process impacts the benefits of page promotion and TLB

coalescing. Similarly, TLB coalescing can suffer when TLB

shootdowns flush merged TLB entries covering large regions.

As shown in Figure 5b, under memory oversubscription, the

fraction of hits in entries with large coverage is significantly

reduced when compared to the no-oversubscription scenario.

F. A Case for Speculative Address Translation

One promising approach to mitigate the address transla-

tion overhead in the virtual memory is speculative address

translation [5], [10], [59], which predicts the physical address

corresponding to a given virtual address by leveraging page

contiguity, as shown in Figure 4 (right). This method enables

the pipeline to continue processing with the predicted address

while validating the address speculation in the background.

Once the data is loaded from the predicted address, the

compute units in the processor pipeline immediately use it to

execute instructions. This method can effectively eliminate the

address translation latency if the speculation proves correct.

However, in case of incorrect speculation (mis-speculation),

all incorrectly executed instructions must be flushed from the

processor pipeline. This mis-speculation is more problematic

on GPUs than CPUs since the GPU architecture fundamentally

does not support speculative execution [45] and cannot roll

back erroneously executed instructions. Furthermore, even if

we make GPUs to support speculative execution, the expensive

roll-back process would essentially diminish the effectiveness

of the speculative address translation. Consequently, despite

its potential benefits, adopting speculative address translation

in GPUs is quite challenging without proper support.

In this paper, we aim to propose a speculative address
translation scheme equipped with a rapid validation mech-
anism to mitigate the address translation overheads in GPUs

while tackling GPU’s architectural limitations that hinder the

adoption of the speculative approach. Note that the goal of our

proposed scheme is to reduce the TLB miss penalty, and thus,

it can be synergistically integrated with the prior techniques

developed to decrease TLB misses.
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Fig. 6: An overview of Avatar.

III. AVATAR FRAMEWORK

This section presents Avatar, a novel framework that

enhances GPU performance by leveraging speculative ad-

dress translation with rapid validation. Figure 6 provides

an overview of Avatar. Avatar includes two components: A

Contiguity-aware Speculative Translation (CAST) and B In-
Cache Validation (CAVA).

Figure 7a illustrates a timeline example for a memory

request in the baseline system. This example assumes that the

memory request misses on both the TLBs and caches, resulting

in highly serialized memory access. This serialization signif-

icantly increases the memory access latency and is generally

observed in most workloads because memory accesses missed

in the L1 TLB are likely missed in the L1 cache [12].

Speculative Address Translation in GPUs: To mitigate the

long memory access latency caused by the address transla-

tion, we propose a novel address translation scheme called

CAST. CAST speculates the physical address by tracking

the continuous virtual-to-physical mapping region. Figure 7b

illustrates a timeline of the memory request in the system

with CAST. When a load request misses in the L1 TLB

(�), the address translation request is forwarded to the L2

TLB. Simultaneously, CAST speculates the physical address

and performs a lookup in the L1 cache with this address. If

the memory request misses in the L1 cache (	), the data is

fetched from the L2 cache or main memory. Since GPUs do

not support speculative execution, the fetched data remains in

the L1 cache unusable until the address translation confirms it.

(a) Baseline.

Look up

L1T/C
L2T / Page Walk

L2C / Memory

L1C miss
Replay L1C hit & Return

L1T/C

L1T miss1

2

3 4

(b) CAST only.

Look up

L1T/C
L2T / Page Walk

L2C / Memory

L1C miss

L1T/C

L1T miss

2

Remove1 5

Replay L1C hit & Return3 4

(c) Avatar (CAST + CAVA).

Fig. 7: Timelines of a memory request in three configurations. T and
C indicate TLB and Cache, respectively.
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Fig. 8: The proportion of memory accesses from the same load in-
struction that accesses pages within a 2MB memory chunk. Memory
accesses from the same load instruction exhibit high spatial locality
within a chunk, with an average of 89%.

Upon successful speculation, the memory request replays the

L1 TLB\L1 cache lookup (
), and it hits in the L1 cache as

the data has already been fetched using the speculated address

(�). CAST allows GPUs to overlap address translation with

memory access, thereby reducing the TLB miss penalty.

While CAST can enhance performance, its benefit is con-

strained because speculatively fetched data remains unusable

until validated. This necessary validation process limits per-

formance gains, especially when address translation involves

a slow page walk. Thus, quickly validating the speculative

translation is essential to fully realize CAST’s potential.

Rapid Validation: For this purpose, we propose the second

component: CAVA. CAVA enables rapid validation of the

speculative address translation in the L1 cache, allowing

immediate use of the data fetched with the speculated physical

address. To this end, we embed page information (i.e., VPN)

into data (i.e., sector) using memory compression. Once the

data (i.e., sector) is brought from the lower-level memory,

CAVA utilizes the embedded information for rapid validation.

Figure 7c illustrates the timeline of a memory request in the

system with CAST and CAVA. The processes � and � are

the same as the system with only CAST. However, once the

memory request fetches the data into the L1 cache, CAVA

validates the speculation by comparing the embedded VPN in

the data with the requested virtual address (�). On correct

speculation, GPU cores immediately use the fetched data (�).

Eliminating & Propagating Verified Address Translation:
While CAVA performs validation for speculative address trans-

lations, there may still be an ongoing address translation

process (e.g., page walk). This ongoing translation request

consumes constrained memory resources, such as memory

bandwidth or TLB MSHRs. In particular, a page walk gen-

erally takes a long execution time, preventing other requests

from utilizing those resources during that period. Furthermore,

other SMs may also require translation for the verified page.

To this end, CAVA employs the Early-TLB-Fill (EAF) scheme.

Once a speculated address is verified with CAVA, EAF

generates a TLB entry with the embedded page information

and stores it in the TLBs, eliminating the ongoing address

translation process (� in Figure 7c). Moreover, this TLB entry

is sent to other SMs, enhancing the efficiency of one rapid

validation across the system.

A. CAST: Contiguity-aware Speculative Translation

Observation - Page Access Pattern of Load: Warps orig-

inating from the same GPU kernel share the same program

code. As a result, threads belonging to these warps tend to

exhibit similar instruction and data access patterns [34], [55].

When executing the same load instruction, we analyze the

page region accessed by multiple warps allocated to the same

SM. As shown in Figure 8, the memory requests from the load

instructions with the same PC are highly likely to access the

same 2MB memory chunk, a physically contiguous memory

region. On average, 89.0% of memory accesses from the same

instruction fall within a 2MB memory chunk.

Mapping Offset Detection Table (MOD): Based on this

observation, CAST employs a Mapping Offset Detection Table

(MOD) that dynamically identifies continuous regions. MOD

maintains the offset between a virtual address and its corre-

sponding physical address for each load instruction to monitor

contiguity in 2MB chunks. Each MOD entry has three fields:

PC, state counter, and V2P offset. The PC field contains a load

instruction’s program counter used as a tag. The state counter

is a 2-bit saturating counter indicating prediction confidence.

The V2P offset provides the difference between the virtual and

physical addresses. MOD is fully associative and uses an LRU

replacement policy.

When an instruction encounters a miss in the L1 TLB, the

required translation is retrieved from either the L2 TLB or

the page table, and a new TLB entry is inserted into the L1

TLB. During this process, a MOD entry corresponding to the

instruction is updated with a new V2P offset calculated by

subtracting the Virtual Page Number (VPN) from the Physical

Page Number (PPN). When the new offset is identical to the

existing one, the state counter is incremented by 1. Otherwise,

it is decremented by 2; the state counter is decremented

quickly to catch changes in address mapping. A higher value

of the state counter indicates that the current V2P offset is

fairly reliable. The V2P offset is only updated to a new value

when the state counter value is zero. When the V2P offset is

updated, the state counter is initialized to 1. If no MOD entry

corresponds to the instruction, a new entry is allocated and

initialized with the new V2P offset.

CAST Operation with MOD: Figure 9 shows the whole

process of CAST. A load request missing in the L1 TLB

accesses the MOD using its PC (A). If a corresponding entry

exists, CAST checks if the state counter exceeds a threshold

( B ). In this study, we set the threshold to 2. When the counter

value exceeds the threshold, CAST generates a speculated PPN

by adding the MOD entry’s V2P offset to the VPN ( C ). It then

TLB-miss
request

PC Count V2P Offset

0x03

0x05

0x01 3 0x06

≥ thresh?
Enable

+

0x0815 0x257

Speculated
Physical Address

A

PC VPN Page Offset
0x01 0x080F 0x257

B
C

Speculated PPN Page Offset

Fig. 9: Speculative address translation with MOD. A virtual-to-
physical address (V2P) offset is added to the VPN of the requested
virtual address.
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Fig. 10: Compression ratio (BPC [33]) on 32B sectors and percent-
age of 32B sectors compressible to 22B.

constructs a speculated physical address by appending the page

offset to this PPN and forwards this address to the load-store

unit and the L1 data cache.

To record and manage memory requests with speculative

address translation, we employ an additional bit, called the

speculation bit, in each entry of the pending table within the

load-store unit [1]. The pending table holds the speculated

PPN and the speculation bit representing the speculative

translation status. This bit is set when speculative translation

is initiated and unset when the speculation is validated.

B. CAVA: In-Cache Validation

Memory Compression Opportunities: CAVA utilizes a data

compression technique to embed the page information (e.g.,

VPN and Permission bits) into each sector. Several memory

compression schemes are used in prior works, particularly

for GPU workloads [6], [15], [33], [42], [75]. In this paper,

we employ BPC [33] (Bit-Plane Compression) algorithm to

compress the sectors. To analyze the compressibility of 32B

sectors in GPU workloads, we attempt to compress each 32B

sector into 22 bytes. We utilize NVBit [76] to collect the

memory dump of each sector for various GPU workloads.

Figure 10 shows the compression ratio and the percentage of

32B sectors that can be compressible to 22 bytes. Most of the

benchmarks show a compression ratio above 1.45, which is

the ratio needed to compress a 32B sector to 22 bytes. This

result is consistent with observations of the compressibility of

GPU workloads in prior works [15], [33], and it arises from

the inherent homogeneity of GPU workloads across various

data types. Our experimental result shows that about 67.5%

of sectors can be compressed to 22 bytes.

Embedding Page Information into Sectors: Figure 11 shows

the process of embedding page information into sectors. The

GPU runtime and driver prepare for a page migration when a

page fault occurs. As the runtime manages the whole unified

memory space, it provides the page information about the de-

manded page ahead of the migration. This is possible because

page migration is triggered only after memory mapping is

completed [4]. The transferred page information includes the

VPN and permission bits (e.g., read-only), which are essential

for fast validation [52]. When the demanded page is transferred

to the GPU, the page information is transferred together ( a ).

On the GPU side, the individual sector of the transferred page

is compressed, and the page information is appended to the

compressed sector ( b ). To this end, we add a (de)compression

engine to each GPU memory controller for compressing a 32B

sector to 22 bytes, allowing the 8B page information to fit

GPU
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Fig. 11: Embedding page information into each sector.

within the remaining 10B region. The remaining 2B space is

utilized for a signature that indicates the compression status

of the sector.

Managing Compressed Sectors: CAVA must identify

whether the sector fetched from the GPU main memory is

compressed and includes page information. To accomplish

this, CAVA employs Attaché [24] framework, a specialized

metadata encoding scheme. Attaché utilizes the top 15 bits

of the 2B signature to store a predefined value called the

Compression ID (CID), which is used for marking compressed

sectors. When the top 15 bits of a sector match the CID,

it is considered compressed. This straightforward approach

assumes that the top 15 bits of the uncompressed sector are dif-

ferent from the CID. However, there is a possibility (0.003%)

that some uncompressed sectors may naturally contain the

CID, leading to invalid CID collisions. To address this issue,

Attaché introduces the Exclusive ID (XID), which signifies

that the sector has the CID even though it is uncompressed.

When a sector is incompressible, and its top 15 bits are

identical to the CID, the compressor replaces the top 16th

bit of the sector with XID and stores the replaced bit in a

reserved region of the GPU main memory.

Fetching Sectors from GPU Main Memory: When a sector

is fetched from the GPU main memory, the memory controller

identifies whether the sector is compressed by comparing the

top 15 bits of the sector with the CID. To support CAVA, we

add two additional bits to each sector tag of the L2 cache:

the compression bit (C) and the guarantee bit (G), as shown

in Figure 12. The compression bit distinguishes compressed

sectors in the cache, while the guarantee bit specifies whether

speculation for the sector is validated. The sector tag of

Sector 0G C Sector 1G C Sector 2G C Sector 3G C
Cache line in L2 cache

Fetch into L1 cache

In L1 cache

Sector 0C

Decompress

1 Enable
Data

VPN PPN Sector
0x0809 0x0815 0

Request Information in MSHR
VPN : 0x0809 =

Validation

Enable

GPU cores

2

3
Data1

L1 cache line
Stored

Fig. 12: In-Cache Validation for memory request with predicted
physical address.
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Fig. 13: Early TLB Fill process. EAF repurposes the page informa-
tion embedded in the sector to reduce traffic on the address translation
hierarchy.

the L1 cache only needs the guarantee bit because data is

decompressed before being stored in the L1 cache.

Validating Speculative Translation: Figure 12 depicts the

rapid validation process. When data is fetched from the lower

memory hierarchy with a speculated address, CAVA checks

the compression bit of the fetched sector. If the sector is

compressed, CAVA obtains the VPN by decompressing the

sector (�) and compares the VPN with that of the requested

virtual address (�). If it turns out that the speculation was

correct, the GPU cores can immediately use the data (�).

Consequently, the verified data is stored in the L1 cache just

like normal data fetch. Once the memory request with the

speculated address is validated, CAVA performs a lookup in

the load-store unit’s pending table to find the corresponding

entry registered by the memory request. If the speculation bit

is set, it indicates that the background address translation is

currently in progress within the TLB hierarchy. In such a case,

CAVA removes the corresponding entry from the table and

completes the memory request.

Handling Mis-Speculation: Since Avatar enables access to

memory with speculatively translated addresses before validat-

ing the speculations, effective handling of mis-speculation is

essential to ensuring accurate and trusted program executions.

Avatar renders unverified sectors invisible in the cache to

prevent malfunctions or security threats, similar to a prior

technique [77]. When a compressed sector fails validation due

to VPN or permissions mismatch, Avatar promptly invalidates

the fetched sector to prevent any inappropriate usage. For

uncompressed sectors that are speculatively fetched, Avatar

unsets the guarantee bit in the sector tag. If the guarantee bit

is unset, the sector remains unseen (valid but not usable) in

the cache. Once the translation of the background address is

completed, Avatar will check the pending table in the load-

store unit. When the speculated PPN does not match with

the actual PPN, Avatar invalidates the fetched sector from the

cache. If the speculation is accurate, Avatar sets the guarantee

bit of the fetched sector to mark it as valid and usable.

C. EAF: Early TLB Fill

Constructing a TLB Entry: When CAVA successfully val-

idates a speculative address translation by using the page

information embedded in the fetched sector, we can use the

information to construct a new TLB entry. Figure 13 illustrates

Early-TLB-Fill (EAF) process. CAVA provides both the page

information and PPN to EAF, and EAF then utilizes this

information to construct a TLB entry ( a ).

Releasing Constrained Resources: EAF stores the new TLB

entry in L1 TLB ( b ) and deallocates its corresponding MSHR

entry. Subsequently, EAF finds a page walk request in the L2

TLB MSHR and PW buffer registered for the TLB entry ( c ).

If a match is found, the new TLB entry is stored in the L2 TLB,

releasing resources in the L2 TLB MSHR and PW buffer. By

quickly releasing resources, EAF reduces TLB miss penalties.

Furthermore, EAF forwards the new TLB entry to the L1

TLB of different SMs that require the translation, ensuring the

desired translation is efficiently prefetched across SMs ( d ).

D. Discussion

Compression Bandwidth: Avatar employs (de)compression

engines in each GPU memory controller as in prior works [6],

[15], [33], [64], [66], [75]. Therefore, the compression scheme

of Avatar does not affect the memory channel bandwidth,

which is crucial for efficiently handling data-intensive work-

loads on GPUs. To validate the hardware overhead of the

(de)compression engines, we implement a Verilog model for

the BPC algorithm and synthesize it with 28nm UMC standard

cells [74]. The total area of the (de)compressor engines in

GPU memory controllers (total 16 memory controllers in our

baseline) is 0.314mm2, which is quite small compared to a

single GPU die size (∼800mm2 [48]).

TLB Shootdown: When a page table entry (PTE) is modified,

the GPU driver triggers a TLB shootdown operation to clear

outdated translation data from the GPU’s TLBs. Since Avatar

stores the page information alongside the data within each

sector, the TLB shootdown operation also necessitates invali-

dating the in-sector page information from caches or DRAMs,

increasing the cost of the TLB shootdown. The primary cause

of the TLB shootdown in the CPU-GPU systems is the

page migration between a GPU and a host CPU or between

GPUs [2], [11], [38]. Figure 14 illustrates a timeline of the

page migration process. To migrate a page, the GPU driver

flushes the page’s contents from the on-chip caches (�) and

invalidates the PTE of the page from the TLBs (	). After

that, the page’s contents are transferred to the CPU (or another

GPU) through an inter-processor link (
). Finally, the driver

updates both the local page tables on the GPUs and a global

page table (�). During this process, it is not necessary to

explicitly invalidate in-sector page information in the cache

because all the contents of the migrated page are automatically

Fig. 14: Timeline of page migration process with invalidation of in-
sector page information.
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flushed from the caches (�). Furthermore, updating the in-

sector page information for the migrated page is unnecessary.

This is because the information contains a VPN rather than a

PPN, and the VPN remains unchanged even after the page is

remapped to a new physical address.

The only additional operation introduced by Avatar during

the page migration process is clearing the in-sector information

from the GPU DRAM. Even after a page is migrated to

the CPU or another GPU, the page’s contents, including the

in-sector page information, remain in the original location

within the GPU DRAM. This leftover data poses a risk of

generating an accurate speculation for an invalid page. To

address this issue, Avatar must zero out the DRAM columns

where the page was previously located (�). The migration

process inherently involves reading data from the DRAM,

allowing for the zeroing operation to be seamlessly integrated

by overwriting the opened row with zeros just after reading

data from the row.

Speculation on Invalid Pages (False-Speculation): Since

pages are migrated to GPU memory on-demand in UVM,

the physical address speculated by Avatar may be invalid

or not present in GPU memory. We refer to this case as a

false speculation. CAVA can handle false speculation because

a speculatively fetched invalid sector is not compressed and

lacks page information. After the page fault is serviced, the

memory requests to the fault pages are replayed [80]. Avatar

then offers speculative translation again on this replay.

Page Migration Scheme: Some modern GPU systems use

a static access counter threshold-based migration [38], [65].

This approach monitors memory accesses on pages using

counters and selectively migrates those pages once their access

counter reaches a specific threshold. As a result, some cold

pages remain unmapped to the GPU memory. In those GPU

systems, updates to MOD are conducted only for GPU-mapped

addresses. This strategy prevents speculation translation from

being used for non-GPU-mapped regions.

Multi-tenancy: When a GPU is spatially shared to support

multi-tenancy [7], [9], [41], [62], Avatar needs to differentiate

between multiple active virtual address spaces. Avatar embeds

the Address Space ID (ASID) within the page information to

achieve this. In the case of page sharing, where multiple virtual

address spaces share a page, multiple VPNs are mapped to the

same PPN. Avatar does not store the page information within

the data to prevent translation collisions for that page.

Cache Designs: Avatar can work with the VIPT cache design

(the baseline) and other cache designs, such as the PIPT

(Physically Indexed Physically Tagged) cache and the VIVT

(Virtually Indexed Virtually Tagged) cache. In the PIPT de-

sign, a memory request performs data cache lookups after the

address translation is completed. This process does not require

major changes in Avatar’s operation compared to the VIPT

design. In contrast, in a fully virtual L1 cache design, the

address translation hierarchy is located between the L1 cache

and the shared L2 cache. Thus, address translation is only

needed on an L1 cache miss. When a memory request misses

the L1 cache and L1 TLB, CAST performs speculative address

translation and sends a memory request using the speculated

physical address to the L2 cache.

Security Implications: Avatar maintains a security level

comparable to conventional GPUs by effectively addressing

potential information leakage through two primary mecha-

nisms. First, the CAVA makes the sectors speculatively fetched

invisible in the cache until their speculative translations are

validated, as described in Section III-B, which inherently

blocks direct unauthorized data access by attackers. Sec-

ondly, the CAST mechanism uses historical address translation

records to guide speculative translations, preventing unautho-

rized access to arbitrary addresses. Additionally, current GPUs

support isolated security domains, such as NVIDIA Multi-

Instance GPU (MIG) [48], [51]. MIG provides isolation on

computing resources and the entire memory system. In such

cases, unauthorized data access through mis-speculation can be

initially prevented at the memory system isolation boundary.

IV. EVALUATION

A. Experimental Methodology

We use GPGPU-sim v4.0 [31] with a system configuration

similar to NVIDIA Ampere (RTX3070) [49]. We enhance

the framework to implement hierarchical address translation.

The baseline system use the UVM demand paging [3], [4]

and page fault handling mechanism [19], [80]. For efficient

memory allocation, we employ a tree-based neighborhood

TABLE II: Simulated Baseline Configuration.

GPU core
46 SMs, 1132MHz, LRR scheduler
Max 48 warps per SM

L1 TLB
32 entries (4KB, base), 16 entries (2MB)
25 cycle latency, fully associative
4 ports, 32 MSHR entries

L2 TLB
1024 entries (4KB, base), 128 entries (2MB)
90 cycle latency, 8-way associative
8 ports, 128 MSHR entries

L1 cache 128KB, 39 cycle latency, 128B line (sectored)
L2 cache 4MB, 187 cycle latency, 128B line (sectored)

DRAM

1750MHz (GDDR6), 16 channels
28GB/s per channel, DRAM page size = 4KB
tRCD = 13.7ns, tCL = 13.7ns, tWL = 4.6ns
tRTW = 6.3ns, tRP = 15.3ns

Page table 4KB page (base), 2MB page (promotion), 4-level
Page walker 16 walkers, 128 page walk buffer entries
Page walk cache 64 entries, 8 ports
Page Prefetcher TBN prefetcher [19]

CAST
32-entry MOD
2 for the state counter threshold

CAVA
(de)compression engine based on BPC [33]
7 cycles for decompression in L2 cache

TABLE III: Workload Categorization.

Class Benchmark Abbr. Data
Type Benchmark Abbr. Data

Type

L
fw [13] FW I lavaMD [14] LMD D

gemm [20] GEMM F sgemm [70] SGEM F

M
backprop [14] BP F shoc-MD [17] MD I

histo [70] HIS UI pathfinder [14] PAF I

H

lulesh [30] LUL F color max [13] GC I

fdtd2d [20] FDT F betweenness [43] BET UI

conv.Sepa [46] CON F cfd [14] CFD F

sssp [13] SSSP I spmv [70] SPMV I/F

connected [43] CC UI s.cluster [14] SC F

kmeans [14] KM F XSBench [73] XSB I/D
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Fig. 15: Performance comparison. Results are normalized to the baseline.

page prefetcher [19] on our system. Table II summarizes

detailed system configurations for the baseline.
For the Avatar mechanism, we incorporate CAST, which

consists of a 32-entry MOD. A GPU kernel generally does

not have diverse load instructions (PCs) [34], so a 32-entry

size is sufficient for tracking the page contiguity. For CAVA,

we add a compression engine based on BPC [33] and extend

the whole memory system to support sector compression. As

Avatar cooperates with the memory compression scheme, we

append additional latency to the data cache access path. We

assume seven cycles of decompression latency [33] for the

shared L2 cache.
We evaluate 20 workloads from various benchmark

suites [13], [14], [17], [20], [30], [43], [46], [70], [73] as

listed in Table III. The workloads are selected based on

their data types (for diverse compressibility), working set

sizes, and memory access patterns (for TLB sensitivity). The

dominant data type for each workload is denoted as I/UI/F/D

for int/unsigned int/float/double, respectively. We classify the

workloads into three classes based on their L2 TLB misses

per million instructions (L2 TLB MPMI); under 10 for class-

L, between 10 and 60 for class-M, and over 60 for class-H.

The working set size of the workloads ranges from 4MB to

2.24GB, on average 14.5MB for class-L, 80.4MB for class-M,

and 701.7MB for class-H.

B. Performance
Figure 15 shows the overall performance of seven different

configurations. We compare the baseline, Page Promotion

(Promotion) [7], CoLT [58], SnakeByte (SB) [37], and Avatar

(CAST+CAVA). We assume that CoLT can merge up to 16

contiguous pages since a 128B cache line can accommodate

16 8B-PTEs. Additionally, we compare Avatar with its two

variants: using only CAST (CAST-only) and using CAST

with ideal validation (CAST+Ideal-Valid). This experiment

highlights the individual contributions of CAST and CAVA

to performance improvements and explores the potential ben-

efits of integrating CAST with ideal validation. The main

distinction between CAVA and ideal validation is that ideal

validation confirms all speculative translations done by CAST

before CAST fetches the data from the speculated addresses.

We adopt Page Promotion for other configurations, as it can

work orthogonally with them. In the experiment, we do not

consider page fault handling latency to focus on the address

translation overheads.
1) Impact of CAST: CAST-only achieves an average per-

formance improvement of 29.1% compared to the baseline,

outperforming Page Promotion by 6.8%, CoLT by 1.5%, and

SnakeByte by 7.3%. This improvement comes from CAST’s

ability to overlap address translation with memory access by

fetching data from a speculated address. This approach is

particularly effective for workloads such as GEMM and MD,

where the address translation traffic is relatively low; thus the

speculative translation is quickly validated for most memory

requests. On the other hand, workloads such as FDT and CC

show relatively low-performance improvements with CAST-

only. This is because the address translation takes longer

for these workloads due to multiple in-memory page table

walks. Without CAVA, the fetched data from the speculated

address is not usable before validation, reducing the potential

benefit from CAST for these workloads. Similarly, PAF, CON,

and XSB exhibit a performance gap between CAST-only and

Avatar due to this limitation.

2) Avatar Performance: Avatar achieves a 37.2% perfor-

mance improvement on average compared to the baseline.

Compared to prior works, Avatar outperforms Page Promotion

by 14.9%, CoLT by 10.1%, and SnakeByte by 16.3%. To

analyze the impact of speculative translation, we track memory

accesses that get speculative translation in Avatar. For clar-

ity, we track only accurate speculation. Figure 16 quantifies

the fraction of those memory-access results. There are four

terms in Figure 16, each associated with various situations

that can occur in Avatar. The term ‘L1D hit’ signifies that

rapid validation has failed (no page information in a fetched

sector), but after background translation is completed, the

original memory access uses the prefetched sector. The term

‘L1D merge’ signifies that rapid validation has failed, and

the background translation is completed before the sector is

fetched. In this case, the original memory access is merged

with the speculative access in the cache MSHR. These two

cases partially hide the memory latency, similar to what is

shown in Figure 7b, accounting for 59.0% of the results on

average. GEMM, SGEM, and BET mainly benefit from this

partial latency hiding.

Fig. 16: Fraction of the memory-access results which get speculation
in Avatar.
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(a) The number of page walks. (b) DRAM traffic.

Fig. 17: The impact of EAF on (a) page walks and (b) DRAM traffic

The term ‘Fast Translation’ represents the memory accesses

affected by rapid validation and EAF. When a rapid validation

occurs, EAF combines a TLB entry with the page information

obtained from the sector and propagates it throughout the

whole address translation hierarchy. As a result, a single rapid

validation can influence numerous address translation requests.

The ‘Fast Translation’ provides much more benefit than the

‘L1D hit’ and the ‘L1D merge’ since it effectively eliminates

TLB-miss overhead. On average, the ‘Fast Translation’ ac-

counts for 38.6% of the results. In particular, PAF, CON,

CC, SC, and KM show a high portion of ‘Fast Translation’,

demonstrating outstanding performance gains in Avatar. Re-

markably, SC shows a relatively high ‘Fast Translation’ ratio

(78.9%) despite its low data compressibility (13.5%). This

result suggests that Avatar can achieve relatively high perfor-

mance for low-compressible workloads with the help of EAF.

Lastly, the term ‘L1D miss’ signifies that the speculatively-

fetched sector has failed to perform rapid validation and

is evicted from the cache before the original request uses

it (resulting in no benefit from the speculation). This early

eviction leads to cache pollution and memory bandwidth

waste. However, the ‘L1D miss’ only accounts for 2.3% of

the results on average, meaning that Avatar does not cause

cache pollution despite aggressive data fetching.

Since Avatar aggressively fetches data from speculated

addresses, DRAM traffic may increase. However, Avatar only

fetches ‘a sector’, reducing the potential impact on mem-

ory bandwidth. Furthermore, Avatar reduces the burden on

memory bandwidth by cooperating with EAF. Figure 17a

shows the impact of EAF on page walks, indicating a 19.1%

decrease in the number of page walks for class-H workloads

compared to Promotion. Removing a single page walk can

have a similar effect to eliminating multiple memory accesses,

countering potential drawbacks of aggressive speculation that

may saturate memory bandwidth. Consequently, Avatar can

preserve DRAM traffic similar to the non-speculation case

(2.2% increased on average, as shown in Figure 17b).

3) Speedup with Ideal Validation: CAST+Ideal-Valid out-

performs Avatar by 5.8% on average. For GEMM, MD,

BET, and CFD, all variants (i.e., CAST-only, Avatar, and

CAST+Ideal-Valid) achieve similar performance. These work-

loads perform well even when only using CAVA, as men-

tioned in Section IV-B1. For CON and CC, the performance

difference between Avatar and CAST+Ideal-Valid is minimal

because of their high data compressibility. In contrast, the low

data compressibility of some workloads, such as SC and XSB,

results in a noticeable performance gap between Avatar and

Fig. 18: Speculation accuracy and coverage.

CAST+Ideal-Valid. Nevertheless, the performance improve-

ment achieved by Avatar is significantly higher compared to

CAST-only and other prior techniques for these workloads.

This is because the translation information provided by CAVA

can be used to validate the speculation and construct a TLB

entry for multiple SMs. By constructing a TLB entry before

the page walk is completed, Avatar can reduce TLB misses

and pipeline stalls, even if a few sectors are compressible.

This highlights Avatar’s superior capability to enhance perfor-

mance, even for workloads with low data compressibility.

4) Speculation Accuracy and Coverage: Figure 18 shows

the accuracy and coverage of speculations achieved by MOD.

The PC-based contiguity detection mechanism results in an

average speculation accuracy of 90.3%. Speculation coverage

refers to the percentage of correct speculations over all L1

TLB misses. MOD achieves an average speculation coverage

of 73.4%. Overall, MOD effectively supports the translation

of speculative addresses.

5) Comparison to Prior Works: Page Promotion [7] effec-

tively reduces TLB pressure for workloads exhibiting locality

in memory access patterns within a 2MB logical chunk, such

as SSSP and SPMV. With the support of a page prefetcher [19],

these workloads rapidly fill a logical chunk and promote it

to a large page. However, the benefits of Promotion only

materialize after such a promotion occurs. In scenarios where

a workload utilizes only a small portion of a chunk, it fails to

build a large page and remains underperforming, as observed

in SGEM and CC). CoLT complements Page Promotion by

providing intermediate TLB reach between base and large

pages. Workloads like KM greatly benefit from CoLT, as

the increased coverage from coalesced TLB entries effec-

tively meets the required translation range. Nonetheless, the

intermediate TLB reach offered by CoLT has its limitations.

Specific workloads, such as SC and XSB, derive little benefit

from CoLT or exhibit a notable performance gap compared

to Avatar. These workloads feature irregular memory access

patterns, challenging CoLT’s ability to meet the translation

range they demand. Moreover, the TLB reach CoLT offers

comes after a page table walk, lacking the immediacy of

solutions like Avatar. While SnakeByte introduces varying

degrees of TLB reach through recursive merging (effective for

BET and CON), certain workloads such as PAF and CC show

decreased performance compared to CoLT. It is because the

recursive merging of SnakeByte fundamentally performs best

with a specific paging scheme [5], the benefits from recursive

merging in a UVM-like paging scheme may not effectively

cover the overhead of additional memory references for merg-
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Fig. 19: Performance comparison under memory oversubscription
(130%). Results are normalized to the baseline.

(a) No oversubscription. (b) Oversubscription (130%).

Fig. 20: Average memory access latency comparison.

ing. Figure 20a compares average memory access latency on

those techniques. Promotion and CoLT adequately reduce the

memory latency by releasing TLB overhead. Snakebyte shows

slightly higher memory latency than CoLT because of the

overhead for recursive merging. On the other hand, Avatar

provides immediate translation compared to TLB coalescing.

Consequently, Avatar effectively reduces overall memory la-

tency and exhibits an average performance gap of 10.1% or

more compared to other techniques.

6) Memory Oversubscription: As mentioned in Sec-

tion II-E, memory oversubscription can break page contiguity

and further impact the benefits of prior works. To analyze the

impact of oversubscription, we adjust the main memory size to

incur oversubscription (130%) for each workload, as in prior

research [19]. We exclude LMD, FW, and GEMM due to their

small working sets. As shown in Figure 19, Promotion and

CoLT are still effective for some workloads (such as HIS and

KM) under oversubscription. However, SSSP, SPMV, and SC

show less effectiveness with Promotion and CoLT. For those

workloads, page evictions on TLB-hot pages occur frequently.

As a result, page evictions significantly reduce TLB reach

by flushing TLB entries. For SnakeByte, an eviction reduces

TLB reach and initiates more recursive merging, exacerbating

the overhead of additional memory references. Figure 20b

compares average memory access latency under oversub-

scription (130%). Compared to the non-oversubscription case,

Promotion, CoLT, and Snakebyte are less effective in re-

ducing memory latency on class-H workloads. On the other

hand, Avatar provides more oversubscription-resilient benefits

compared to prior approaches (performance gap of 14.3% or

more). Although oversubscription increases the probability of

false speculation when a chunk is reused after an eviction, the

replay mechanism (discussed in Section III-D) compensates

for the losses caused by false speculation.

C. Sensitivity Analysis

1) Increasing Base Page Size: Page prefetching [3], [4],

[19] increases the minimum page fault handling unit from 4KB

Fig. 21: Performance comparison with 64KB base page. Results are
normalized to the baseline.

(a) Performance improvement. (b) Speculation coverage.

Fig. 22: Comparison of MOD and L-TLB.

to 64KB, thereby the base page size also can be increased

from 4KB to 64KB. We evaluate Avatar and other prior

works with a 64KB base page, adopting the promotion to a

2MB large page in the same manner. We exclude SnakeByte

from this evaluation since a 64KB page does not align with

SnakeByte’s basic operation. Figure 21 indicates that Avatar

achieves a 13% average performance improvement over the

baseline, outperforming Promotion by 7.2% (9.8% for class-

H) and CoLT by 3.0% (4.9% for class-H). The performance

gap between CoLT and Avatar is reduced compared to a 4KB

base page. This reduction is attributed to the large base page

size, which is beneficial for CoLT as it increases the maximum

coverage of coalesced TLB entries (up to 1MB). However,

certain workloads like SC and XSB still perform better with

Avatar. These irregular workloads still touch regions uncovered

by CoLT, so they benefit less from CoLT even though TLB

coverage is increased. In contrast, direct speculation with

Avatar covers any contiguous region within 2MB, resulting

in better performance for these workloads.

2) Address Prediction Technique of CAST: Avatar employs

a PC-based contiguity tracking mechanism (MOD) to ensure

compatibility with other paging schemes. An alternative ap-

proach is to utilize a simple VPN-based contiguity track-

ing method, similar to that used in a previous speculation

study [59]. We compare the performance of Avatar using a 32-

entry MOD and a 32-entry VPN-based tracking table (VPN-

T). Figure 22a shows that VPN-T outperforms MOD by 2.8%

due to its capability for direct speculation, unlike MOD, which

relies on building confidence via the state counter. As a result,

VPN-T offers higher speculation coverage when the entry size

is adequate, as depicted in Figure 22b. However, VPN-based

speculation is less adaptable to different paging schemes due to

its reliance on static prediction based on VPN. Changes in the

contiguity range require updating the table entries to maintain

accurate coverage of the contiguity region. On the other hand,

PC-based MOD is more flexible because it tracks contiguity

based on the characteristics of GPU load instructions.
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(a) Compressibility (b) Performance

Fig. 23: Compressibility and performance for ML workloads.

3) ML Workloads: We evaluate ML workloads such as opt-

LLM (OPT) [79], ResNet50 (RES) [22], VGG16 (VGG) [69],

and EfficientNet (EFF) [71] in different precisions (i.e., FP16

and FP32). Figure 23a shows the compressibility of each

workload. The average compression ratio is 1.38x, and 28.4%

of 32-byte sectors are compressible to 22 bytes. Compression

ratios vary across the ML models and tend to be high for

the models with high precision (i.e., FP32). We note that the

compression ratios measured in our study are lower than the

ratio (1.85x) reported in the prior work [15] as we exclude the

memory requests loading all zeros in measuring the compres-

sion ratio to evaluate the performance gain of the proposed

technique conservatively. Figure 23b shows the performance

normalized to the baseline across different configurations. For

the ML workloads, Avatar outperforms CoLT (best performing

among prior approaches) by 7.1% on average despite relatively

low data compressibility. This considerable performance gain

of Avatar for workloads with limited data compressibility is

mainly due to its ability to overlap data fetching with address

translation, as discussed in Section IV-B1.

V. CONCLUSION

This paper presents Avatar, a technique that reduces address

translation overheads for GPUs. Avatar speculates the physical

address by exploiting page contiguity and rapidly validates the

speculated address using the page information stored within

data blocks. This novel speculation scheme is orthogonal to

various TLB designs and page walk systems in GPUs. It helps

break GPUs’ architectural limit and the problem of flush on

mis-speculation, essentially overcoming a fundamental hurdle

for adopting speculative translation. Our experiments show

that Avatar achieves an average performance improvement of

37.2% across various workloads.
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