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ABSTRACT Address translation using a logical-to-physical (L2P) mapping table is essential for the NAND
Flash-based SSDs. Unfortunately, the L2P mapping table size increases as SSD capacity increases. The
mapping table is basically stored in the NAND flash, and a small number of the table entries are cached in
the DRAM, leading to performance degradation due to the overhead of loading the mapping table entries
from the slow NAND flash. The performance overhead of the address translation is more severe in low-cost
flash-based storage systems (e.g., DRAM-less SSD) because they do not employ the DRAM for caching
the mapping table, and thus, every I/O request involves an additional read request to the flash to load an
address mapping information. To tackle the address translation overhead in the SSDs, this paper proposes
ASTRO framework that speculatively translates the logical addresses to physical ones by maintaining the
contiguity in the address mappings as much as possible. ASTRO consists of three novel mechanisms: 1) Lazy
Page Ordering (LPO) to rearrange the pages to maintain the contiguity in the address mappings for each
region, 2) Speculative Read (SpecREAD) to convert logical addresses to physical addresses speculatively,
and 3) Contiguity Checking (ContCHECK) to monitor the updates in the rearranged regions. These three
mechanisms are implemented in the FTL software, and some functions are accelerated by adding simple
hardware to the SSD controller. Experimental results demonstrate that ASTRO enhances SSD performance
by an average of 80% and 34% for synthetic random read workloads and real-world workloads, respectively,
while minimally impacting the write amplification factor.

INDEX TERMS Flash translation layer, address translation, storage system.

I. INTRODUCTION

Solid-state drives (SSDs) have fundamentally transformed
data storage paradigms by offering numerous advantages
over traditional Hard Disk Drives (HDDs), such as faster
access times, lower power consumption, and enhanced
durability [1]. In particular, the NAND flash-based SSDs play
a crucial role as mainstream storage devices in a broad range
of computing systems from smartphones to large-scale data
centers [31]. With data characteristics continually growing
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in complexity and volume, improving the performance and
efficiency of the NAND flash-based SSDs has become a
critical challenge in computing system design [1], [38].

In SSDs, the Flash Translation Layer (FTL) serves as an
intermediary between the operating system and the NAND
flash memory [10]. Unlike traditional HDDs where data can
be overwritten directly, NAND flash memory requires the
erase operation before writing new data to the memory cells.
Since the erase operation of the NAND flash is very slow,
SSDs typically use an out-of-place update scheme that writes
the new data to a free memory region, which is erased in
advance, and then invalidates the old data [30]. Due to the
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out-of-place update scheme, the physical address for specific
data can be changed dynamically in the SSDs, requiring
the logical-to-physical (L2P) address translation. The FTL
is responsible for translating logical addresses to physical
ones [10]. For the address translation, the FTL employs an
L2P mapping table where each entry maintains the mapping
between a logical address from a file system to a physical
address of flash memory.

Since the L2P mapping table is large in size, it is typically
stored in the flash memory and its entry is fetched for
every /O request, significantly impacting the SSD’s perfor-
mance [10], [15], [19], [22]. To improve the performance
of the address translation, many SSDs use some part of a
built-in DRAM as a cache memory to store the mapping
table [15], [22]. However, this approach tends to incur costs
for the additional hardware and increase power consumption.
In addition, as SSD capacity increases, the mapping table
size also increases, making it impractical to store the whole
mapping table in the cache memory. Since the cache memory
size is usually much smaller than the mapping table, many
data-intensive workloads with random access patterns suffer
from frequent misses in the mapping table cache, leading to
significant performance degradation. Furthermore, DRAM-
less flash-based storage products (e.g., Client SSD [39] and
UFS mobile storage [15]) cannot cache a large amount of the
mapping table entries, leading to frequent demand loading of
the table entries from the slow flash memory.
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FIGURE 1. Random read performance.

To tackle this critical challenge in the NAND flash-based
SSDs, this paper proposes a novel framework called ASTRO
(Address translation framework with Speculative Translation
for Read Optimization on SSDs). ASTRO aims to provide
an ideal random read performance, which can be achieved
when all address mapping information is stored in the
mapping table cache, without employing the cache as shown
in Figure 1. ASTRO is designed on top of the page-level
mapping scheme to achieve high performance and flexibility
in address mapping. The key idea behind the ASTRO is to
maintain the spatial contiguity of the physical page addresses
(PPAs) in the flash memory for the contiguous logical page
addresses (LPAs) as much as possible so that most PPAs
can be speculatively translated by adding an offset to a base
address. ASTRO validates the speculated PPAs by comparing
the requested LPA with the embedded LPA stored in the spare
region (i.e., OOB, Out-Of-Band) of the page read from the
speculated PPAs.

ASTRO consists of three key mechanisms: Lazy Page
Ordering (LPO), Speculative Read (SpecREAD), and Con-
tiguity Checking (ContCHECK). LPO divides the physical
address space of the flash memory into multiple regions
and then rearranges the physical pages in the order of the
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corresponding logical addresses within each region in the
background (e.g., read reclaim or garbage collection time).
The second mechanism, SpecREAD, reads the physical pages
from the speculated PPA speculatively obtained by adding
an offset to a Physical Page Base Address (PPBA) if the
page lies in a rearranged region. Then, it validates the
speculated PPA to ensure the correctness of the address
translation. ContCHECK minimizes mis-speculation in the
address translation by checking the updated pages for each
rearranged region.

Our experimental results show that ASTRO achieves an
average speed up of 1.8x for synthetic random read workloads
and 1.34x for real-world read intensive workloads, while
minimally impacting the write amplification factor.

Il. BACKGROUND AND MOTIVATION

A. ADDRESS TRANSLATION IN SSDS: A KEY CHALLENGE
In Solid-State Drives (SSDs), the Flash Translation Layer
(FTL) plays a vital role in managing data stored in the
flash memory. It translates logical addresses used by the
operating system to physical addresses of the flash memory.
This translation is necessary because the flash memory has
several unique constraints. First, it is impossible to overwrite
existing pages; instead, updated data is written to a page
of the erased block, and the old page is marked invalid.
Second, the write granularity (i.e., page size) differs from
the erase granularity (i.e., block size). Due to this, writing
the updated data at the same physical address is inefficient
because this approach requires erasing and rewriting the
entire data in the block associated with the physical address.
Third, the flash cells have limited program/erase (P/E)
cycles, necessitating a wear-leveling mechanism that evenly
distributes write operations across the flash cells by moving
frequently updated data to a less-used block. Recently, the
read disturbance problem has become particularly severe
as the density of the flash cells has increased [11], [28].
This higher density means that cells are more susceptible
to interference from their neighbors during read operations.
To mitigate this problem, the FTL moves data from blocks
that have been frequently read to an erased block for resetting
the read disturbance effect [42].

The address translation capability of the FTL offers
substantial flexibility in managing the flash memory, as it
allows data to be placed and moved dynamically anywhere in
the memory. However, this flexibility introduces additional
overhead in maintaining the address mapping information,
which can result in significant performance degradation.

B. ADDRESS MAPPING SCHEMES FOR SSDS

This subsection describes three conventional address map-
ping schemes that support the address translation in the FTL
and discusses their limitations.

1) BLOCK-LEVEL MAPPING

This scheme maps Logical Block Numbers (LBNs) directly
to Physical Block Numbers (PBNs). Because the address
mapping information is maintained in block size, this
mapping scheme requires a small L2P map. In addition, the
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FIGURE 2. Address mapping schemes.

L2P address translation overhead is low because the physical
page is accessed by calculating the LBN and page offset of
the logical page as shown in Figure 2a. However, this scheme
presents a significant challenge due to an increased Write
Amplification Factor (WAF). Since NAND flash cannot be
overwritten, each write operation necessitates rewriting an
entire block, even if a small portion of data in the block is
updated.

2) PAGE-LEVEL MAPPING

To reduce the WAF, a page-level mapping scheme manages
data at page granularity by maintaining the mapping between
logical page addresses (LPAs) and physical page addresses
(PPAs) for each page, as shown in Figure 2b. This mapping
scheme allows more efficient use of storage space and longer
lifespan of flash cells, as individual pages can be programmed
without rewriting the entire block. However, this scheme
requires a huge L2P map, which cannot be accommodated in
the SSD controller’s small on-chip memory. Consequently,
the SSDs utilizing the page-level mapping store the L2P
map in the flash memory, which can lead to significant
performance degradation unless the L2P map is cached in a
faster memory such as DRAM or SRAM.

3) HYBRID MAPPING

Hybrid mapping combines the strengths of both block-level
and page-level mapping. In Figure 2c, frequently updated
data is managed at page granularity to reduce the write
amplification while less frequently updated data is managed
at block granularity to reduce the L2P map size. In this regard,
many hybrid mapping schemes have been proposed [5],
[21], [23], [24]. However, these mapping schemes have not
overcome the limitations of block level mapping, which
reduces performance and shorten the lifespan of NAND when
block merge occurs frequently due to random writes.

C. CACHING, IS IT A PANACEA?

1) PAGE-LEVEL MAPPING WITH L2P MAP CACHE

Among the above schemes, commodity SSDs usually employ
page-level mapping [10], [13] that has a small impact on the
WAEF. As described above, if the L2P mapping information
is not stored in the embedded DRAM or SRAM, the SSD
controller retrieves the mapping information from the flash
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FIGURE 3. Performance impact of L2P map cache hit rate (left) and
firmware overhead (right).

memory for every I/O request. To address this critical
challenge in the page-level mapping scheme, many enterprise
SSDs store the entire mapping table in an L2P map cache
typically implemented with DRAMs [12]. Figure 3 (left)
shows the random read performance according to the hit
rate of the L2P map cache; the experimental methodology
is described in section IV-A. As shown in the figure, the
performance tends to increase as the cache hit rate increases.
The configuration with a perfect cache (i.e., a hit rate
of 100%) achieves a speedup of 87% over a cache-less
configuration.
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FIGURE 4. Comparison of NAND flash and DRAM: area proportion on an
enterprise SSD (left) and density trend (right).

2) LIMITED SCALABILITY

Although caching the L2P map in fast memory effectively
reduces address translation overheads, this approach is
fundamentally constrained by its limited scalability due to
firmware overheads. Increasing the size of the L2P map cache
results in longer execution times for cache lookup operations,
which are typically implemented in the SSD’s firmware
(FW). Figure 3 (right) shows the firmware overhead and read
performance of the SSD with varying cache sizes. As shown
in the figure, a 256KB cache outperforms a 4MB cache.
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While using a larger cache generally improves performance
by increasing the cache hit rate, the overhead from cache
lookup operations also grows with cache size, offsetting the
performance benefit of the large capacity.

Hardware cost is another key factor to limit the scalability
of the caching approach. Specifically, enterprise SSDs use
DRAMs to cache all or a large portion of the L2P map.
Incorporating DRAMs in SSDs raises the product price,
increases power consumption, and requires substantial space
on the circuit board to accommodate the DRAM chips.
Figure 4 (left) illustrates a conceptual view of an SSD board
composed of NAND flash chips, DRAM chips, an SSD
controller, supercapacitors, etc. In an enterprise SSD [8],
NAND flash and DRAM occupy 15% and 5% of the
board area, respectively. When using DRAMs in the SSDs,
supercapacitors also need to be included to provide reliable
power until the L2P map in DRAM is stored in flash memory
during power loss, consuming another 17% of the board
space. Unfortunately, the area overhead of the DRAMs is
likely to increase further in the future SSD products because
the DRAM is not scaled well compared to the NAND flash
memory, as shown in Figure 4 (right). Consequently, many
low-cost SSDs, such as DRAM-less SSD [39] and UFS
mobile storage [15]), avoid using DRAMs to reduce the
hardware costs, fundamentally limiting the adoption of the
caching approach.

3) RELIABILITY CONCERN

Recently, the reliability issues with DRAM devices have
become increasingly severe [4], [29], [34], [35], which can
potentially limit their use as L2P map caches in enterprise
SSDs. Errors in DRAM, particularly those affecting the
L2P map, can cause significant data management problems
within SSDs. For instance, errors in the L2P map can cause
data to be written in incorrect locations, leading to data
loss or corruption, and can also allow unauthorized data
to be read. To address these growing reliability concerns,
SSD architectures need to incorporate more advanced error
detection and correction mechanisms for DRAM as well as
the NAND flash memories [17], [30].
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D. BUFFERED WRITE SCHEME: MAIN CAUSE OF
NON-CONTIGUITY IN ADDRESS MAPPING

Figure 5 illustrates a typical write scheme of the SSDs
employing the page-level mapping. The SSD controller stores
incoming write data in an internal write buffer in the order it
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receives from the host (@). Then, the FTL creates a logical-
to-physical mapping in an L2P mapping table cache for each
buffered data (®). Afterward, the data in the write buffer is
written to a data block of the NAND flash, and the new L2P
mapping is written to a map block (®). At this time, four
pages (i.e., 4KB data) are stored together in a contiguous
physical location of the data block. This is because the
granularity (e.g., 16KB) of the read and write operations is
larger than the logical page size in the modern high-density
NAND flash memories [18]; we refer to the smallest unit of
read and write operations in NAND flash as a flash page.
In the example shown in the Figure 5, four 4KB pages at
LPA24, LPA5524, LPA7800, and LPA360 are written to the
same 16KB flash page (FPAS00 in this example).

We can make two key observations in this buffered write
scheme. First, the pages that are not contiguous in the
logical address space can be stored contiguously in a physical
location of the NAND flash memory. Second, as the write
operation of the modern NAND flash is performed in flash
page size (e.g., 16KB), which is larger than the logical
page size (e.g., 4KB), some 4KB pages within a flash
page can be invalid when the flash page is partially written
(e.g., PPA2005, 2006, and 2007 are invalid in the example
shown in Figure 5).
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FIGURE 6. Read reclaim scheme (right) to mitigate read disturbance (left)
in NAND flash.

E. READ RECLAIM: A HIDDEN OPPORTUNITY

The modern high-density NAND flash memory is vulnerable
to the read disturbance problem where read operations on
a memory cell cause unintended shifts of the threshold
voltages (Vth) of its neighboring cells [3], [11], [33], [41],
[42]. As shown in Figure 6 (left), a NAND flash block is
organized as an array of NAND memory cells (i.e., floating-
gate transistors) that are serially connected. To read a value
stored in a memory cell, a reference voltage (Vref') is applied
to the wordline (i.e., WL2 in the figure) of a selected cell
while a read voltage (Vpass) is applied to the wordlines of
unselected cells. Since the read voltage is relatively high
to ensure all unselected cells are turned on, the unselected
cell can be unintentionally programmed when the high read
voltage is repeatedly applied to the cells, leading to data
corruption. In modern high-density NAND, the read voltage
affects more unselected cells. The read disturbance-induced
errors are a crucial reliability concern especially for read-
intensive workloads as the error rate depends on the frequency
of the read operations [33].
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To mitigate the read disturbance, the SSDs with high-
density NAND flash memories employ a Read Reclaim
(RR) scheme (a.k.a read refresh) that migrates pages in
a specific block to another block when the read count of
the block exceeds a threshold value (Tgg) [11], [26], [33],
[42]. As all pages are reprogrammed in a new block, any
disturbance effects on those pages are eliminated. Figure 6
(right) illustrates an example of the RR process. In this
example, since the read count of blockl is larger than Tgg,
all its contents are copied to an erased block (Block N-1),
and then blockl is erased. The RR process can significantly
impact the performance of SSDs and reduce the lifetime of
the NAND flash as it involves additional write operations.

While the RR process introduces additional overhead
to SSDs, it also offers an opportunity to improve address
translation. As described in Section II-D, the current write
scheme for the SSDs with page-level mapping results in
non-contiguity in the address mappings for pages. However,
during the RR process, if pages are rearranged as they’re
migrated to a new block, such that contiguous LPAs
are mapped to contiguous PPAs, address translation can
be performed without using the L2P map. This novel
optimization will be elaborated on in the subsequent
section.

NAND Block

SSD : Solid State Drive
Controller

LPO
(Rearrange) Region

ContCHECK i : -
(UB, LPA Check) - | PRBA[LRN]
¥

SpecREAD ig i
(PPBA+LPA_offset) Offset

Valid LPA?

FIGURE 7. ASTRO framework.

Ill. ASTRO FRAMEWORK

A. AN OVERVIEW

In this paper, we propose ASTRO, a novel framework
designed to minimize the address translation overhead
using speculation rather than traditional caching methods.
Figure 7 shows an overall architecture of ASTRO, which is
comprised of three mechanisms: Lazy Page Ordering (LPO),
Speculative Read (SpecREAD), and Contiguity Checking
(ContCHECK).

LPO partitions the physical address space into regions
and rearranges the flash pages so that the pages within
each region are ordered based on their LPA. SpecREAD
speculatively translates LPAs to PPAs by assuming the pages
are ordered in an LPA sequence and then reads data from the
speculated PPAs. Finally, ContCHECK monitors any updates
on the rearranged region to minimize mis-speculation in
the speculative address translation. ASTRO is implemented
as part of FTL firmware, and some features are optimized
through simple hardware implementations within the SSD
controller.

18528

B. LAZY PAGE ORDERING

As described above, in a page-level mapping, new pages
are stored in flash memory in the order they arrive. As a
result, they are assigned arbitrary PPAs, which leads to
no predefined sequence or structure governing where the
pages get placed in the flash memory. While this approach
efficiently utilizes the storage space, it does not necessarily
optimize spatial locality for I/O requests on SSDs.

LPO plays a crucial role in ASTRO by rearranging the
pages based on their LPAs to optimize the placement of
pages within the flash memory. By rearranging the pages into
a structured arrangement, LPO creates a more predictable
environment for the address translation, thereby allowing
the SpecREAD to perform its speculative translation process
more efficiently and accurately. LPO is basically executed
in conjunction with the Read Reclaim (RR) to minimize
additional data copies. Since the RR process is an essential
operation in the NAND flash and it involves extensive data
copies, integrating LPO into the RR process can reduce data
copies and mitigate performance impacts associated with
LPO.
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FIGURE 8. Lazy page ordering.

Figure 8 illustrates the LPO’s rearranging process with
an example scenario. LPO arranges the valid pages in the
ascending order of LPA and keeps the space of the invalid
LPAs empty. To this end, LPO partitions the logical address
space into logical regions and count the number of valid
pages per the logical region. Then, it selects an unordered
region with the largest number of valid pages for the page
rearrangement. In the example shown in Figure 8, it is
assumed that the logical region size (LRS) is 256 pages and
LPO selects the logical region with a logical region number
(LRN) of 9.

LPO retrieves valid pages belonging to the selected logical
region when the pages are copied during a read reclaim
process, and then it stores the pages in ascending order of LPA
in an LPO buffer (). In this process, the buffer addresses for
the pages are calculated by adding the pages’ LPA offset to
the base address of a rearranging area in the LPO buffer ().
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The LPA offset is obtained from the LPA information stored
in the OOB area of the NAND flash. This address calculation
method makes the memory spaces for invalid LPAs remain
empty in the LPO buffer. For example, the page at LPA2306
is invalid, and thus, the corresponding location for the page
in the LPO buffer remains empty (®). After the pages are
rearranged within the LPO buffer, they are written back to free
blocks (@). In this example, the rearranged pages are written
to the block 2 which was a free block (6).

The region information is maintained with a Region Map
Table (RMT) as shown in Figure 9. Each entry in the table
is comprised of the Logical Region Number (LRN), Physical
Page Base Address (PPBA), Contiguous Region Bit (CRB),
and Update Bitmap (UB). PPBA is the physical address
where the corresponding region’s pages are stored in the flash
memory. CRB indicates whether the corresponding region
have been rearranged through the LPO process. UB is used
to determine whether specific pages are updated.

While valid pages in a block are migrated during an RR
process, the block may contain pages that do not belong to
the selected region for the rearrangement. LPO temporarily
stores those pages in a residual buffer and then writes them to
a free block when the residual buffer is almost full (®). These
residual pages are rearranged later when they are migrated in
the future RR process.

As described above, LPO requires two buffers: LPO and
residual buffers. The LPO buffer size varies depending on the
logical region size (LRS). In the example shown in Figure 8§,
since the LRS is set to 256 pages, the LPO buffer size should
be at least IMB (256 x 4KB). The residual buffer size can be
a multiple of block size, which can be configured by the SSD
firmware.
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FIGURE 9. Region map table.

C. SPECULATIVE READ

By using LPO to rearrange the pages, logically adjacent
pages become physically adjacent within the flash mem-
ory. This structured arrangement of pages allows for the
straightforward calculation of PPAs for most pages, typically
requiring only a simple addition of the base address and offset
(equation 1). If ASTRO can correctly speculate the PPAs
for most pages, it will significantly reduce the flash memory
accesses for loading the L2P mapping table, resulting in a
significant improvement in read performance.
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Speculative Read mechanism (SpecREAD) computes the
LRN for the given logical address using the formula outlined
in equation 2. For example, in Figure 9, if the Logical Region
Size (LRS) is 256, the pages with LPA between 2304 and
2559 fall under LRN 9. SpecREAD then obtains the Physical
Page Base Address (PPBA) corresponding to this LRN from
the RMT. Subsequently, SpecREAD determines a PPA by
adding the PPBA and an LPA offset (Offset;ps) calculated
using equation 3. As shown in Figure 8, it is assumed that the
PPBA for the LRN 9 is 512. Thus, SpecREAD translates the
LPA 2307 into the PPA 515 by adding the LPA offset of 3 to
the PPBA of 512.

PPA = PPBA[LRN] + Offsetypa D
LRN = Quotient(LPA/LRS) 2)
Offsetppa = LPA—LRN x LRS 3)

SpecREAD calculates the PPAs by assuming that the
logically adjacent pages are also contiguously stored in the
flash memory. However, this assumption can fail when data
in the rearranged region is updated. When data needs to be
updated, the new data is written to a free page rather than
overwriting the existing one. The old page is then marked
as invalid, and the new page takes its place in the L2P
mapping table as described in section II-A. This “out-of-
place’ update breaks the ordered sequence of the rearranged
regions. Therefore, it is necessary to validate the calculated
PPAs to ensure the correct read operations.

To this end, ASTRO stores the LPA for a page in its OOB
area. The OOB area mainly stores parity for ECC, but LPA
can also be stored. Figure 10 shows the overall operation
flow of ASTRO. Once the SpecREAD reads a page from
the speculated PPA, it compares the LPA fetched from the
corresponding OOB with the given LPA from the host system.
If the two LPAs do not match, SpecREAD obtains the actual
PPA for the given LPA by loading the corresponding L2P
mapping table entry from the flash memory. It then reaccesses
the flash memory to read the page stored at this correct PPA.

Read Start

1. LPO Check
» Rearranged Check.
2. ContCHECK(Update Bitmap)
P Check whether data
has been updated
in the rearranged area.
3. SpecREAD
P Speculative read using
offset operation
L2P Map J based on PPBA.

Read No LPA (*L2P Map Search X)
l - 4. SpecREAD(LPA Verify)
» Check whether the LPA
Normal Yes requested by the host
Read matches the LPA of the PPA
[ [ Done | read from NAND.

FIGURE 10. The flow chart detailing the operation of ASTRO.

D. CONTIGUITY CHECKING

In the ASTRO framework, minimizing the mis-speculation
in the address translation is essential for performance.
To achieve this goal, the ContCHECK mechanism monitors
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the updates in the logical regions. While it is possible to
monitor these updates using a dirty bitmap, where each bit
corresponds to a 4KB page in the flash memory, this method
comes with a significant memory overhead. For instance,
monitoring a 512GB SSD would require 16MB of memory.
To be more efficient, ContCHECK uses an Update Bitmap
(UB) maintained in the RMT for each logical region. The UB
is a sort of bloom filter that is a probabilistic data structure
that can quickly determine whether an element belongs to a
set. Using the UB, ContCHECK efficiently determines the
presence of a requested page within the rearranged region
with a small hardware overhead. In Figure 9, since some
pages between PPA 576 to 639 and between PPA 704 to
767 are updated, the UB of LRNO is set to 4’b0101. The size
of a UB varies depending on how many pages are allocated
per a 1-bit of the UB. For example, if the total capacity of the
SSD is 512GB, there are 128M pages. Therefore, if a 1-bit
of the UB covers 64 pages, the total size of UBs in the RMT
is 256 KB.

TABLE 1. Summary of SSD configuration.

tR 40us
b. LD tPROG 200us
Par
tERASE 2ms
Read Reclaim Threshold (Tkg) 1024
Darap s | Read Threshold of LRS (Tiroread) Ter of LRS
- Update Threshold of LRS (Tiroupdate) 25% of LRS
Number of pages per block 1024 (4MB)
Logical Region Size (LRS) 4096 (16MB)
Update Bitmap (UB) coverage 64 / 256 / 1024 / 4096
Total SSD capacity 64GB

IV. EVALUATION

A. METHODOLOGY

1) SSD SIMULATOR

We use an SSD simulator called FEMU [25], a QEMU-
based flash emulator designed to facilitate full-stack soft-
ware/hardware SSD research. The experiment employs a
Black Box SSD model with modified FTL code and NAND
flash parameters. We assume the read latency of NAND
flash is 40us [16]. In the case of demand loading, a data
page is read after loading the mapping table entries from
the flash memory. On the other hand, SpecREAD directly
reads a data page if it is expected to lie in the rearranged
region. We evaluate the impact on performance using the
UB coverage of 64, 256, 1024, and 4096 pages, with a
default of 64 pages. We assume the LRS is 4096 pages
(4096 x 4KB = 16MB). The simulated SSD performs
read reclaim (RR) when 1024 pages are read from a
block [27]. We configure ASTRO to perform the LPO in
two situations: when a read reclaim occurs and when the
update count in the logical region exceeds 25% of the LRS.
The configurations of the simulated SSD are summarized in
Table 1.
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TABLE 2. Summary of workloads.

Benchmark FIO Filebench
1/0 size 4KB 4KB
Test size 5GB 5GB
Thread count 5 5
R/W ratio 100:0 100:0
Run time 300s 300s
Case Filebench
Type Fileserver Webserver Webproxy Varmail
. Heavy ALogging Intermediary o
Operation data client-access _ between check
transfer records client and server
1/0 size(r/w) 16KB/16KB 1MB/8KB TMB/16KB 1TMB/16KB
Test size 5GB 5GB 5GB 5GB
Thread count 5 5 5 5
R/W ratio 1:2 101 5:1 11
# of operation 100M 100M 100M 100M
Case YCSB
Type A B C D E F
Update Read Read Read Short Read-
Operation heavy mostly only latest ranges of | modify-
records records records records records write
Update 50% 5% 0% 0% 0% 0%
Insert 0% 0% 0% 5% 5% 0%
Read 50% 95% 100% 95% 0% 50%
Scan 0% 0% 0% 0% 95% 0%
RMW 0% 0% 0% 0% 0% 50%
1/0 size 4KB 4KB 4KB 4KB 4KB 4KB
Test size 5GB 5GB 5GB 5GB 5GB 5GB
Thread count 5 5 5 5 5 5
R/W ratio 50:50 95:5 100:0 95:5 95:5 50:50
# of operation 100M 100M 100M 100M 100M 100M

2) WORKLOADS

We use synthetic random read workloads and real-world
workloads. The random read workloads are our main target,
as the performance of these applications have many read
request without write and we can exploit this characteristic to
significantly improve the performance of read by rearranging
physical pages in the order of the corresponding logical
addresses within each region in read reclaim. In this
workload, we test a 5GB workload with FIO [2] and
Filebench(FB) [36] benchmark suit. This workload writes
5GB of data to the SSD and then reads 4KB data at random
addresses. Table 2 (top) summarizes the I/O characteristics of
these workloads.

Regarding the real-world workloads, we also test ten
workloads via the Filebench(FB) and YCSB [6] benchmark
suits, whose detailed parameters are listed in Table 2. The
goal of this evaluation is to demonstrate that the impact of
performance brought by our proposal is quite big, even under
read-intensive workloads with a few write operation. Note
that the number of operation across all workloads is 100M.
In Filebench, Table 2 (middle) shows four types of this real-
world workload: Fileserver, Webserber, Webproxy, Varmail.
The Fileserver workloads include file creation, opening,
reading, adding, and deleting, requiring heavy updates
and a read-to-write ratio of 1:2. The Webserver workload
responds to HTTP requests by opening HTML files and
periodically updating client access records to show read-to-
write characteristics with a 10:1. The Webproxy, operating as
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O DFTL_NC(No Caching) O DFTL_15(15% Caching) O DFTL_25(25% Caching) @ DFTL_50(50% Caching) ~ EASTRO W IDEAL
2.00
2 1.50
3 1.00
[
0.00
FIO_RR FB_RR Fileserver Webserver Webproxy  Varmail YCSB_A YCSB_B YCSB_C YCSB_D YCSB_E YCSB_F Gmean

FIGURE 11. Performance of ASTRO compared to the DFTL according to L2P map caching ratio.

O DFTL_NC(No Caching) 0 ASTRO(64)

2.00
2 1.50
?1.00
2

& 0.50

FIO_RR FB_RR Fileserver Webserver Webproxy

FIGURE 12. Performance impact of update bitmap Coverage.

an intermediary between client and server, executes file read,
create, and delete operations, predominantly characterized
by reads, with a read-to-write ratio of 5:1. Varmail’s e-mail
check operations include reading, opening, marking as read,
and synchronization. This workload has a 1:1 ratio of read
and write [20], [37].

In YCSB, there are six types of real-world workload: A,
B, C, D, E, and F [40]. Each type comprises operations such
as update, insert, read, scan, and read-modify-write (RMW).
“Insert” means write a new record and “Update” means a
record by replacing the value of one field. “Read” means
reading a record, either one randomly chosen field or all
fields, and “Scan” records in order, starting at a randomly
chosen record key. The number of records to scan is randomly
chosen. “RMW” is an operation that reads, modifies, and
updates the record as it is. The detailed description of
the YCSB is summarized in Table 2 (bottom). The DB
uses RocksDB [7], [9], an unstructured database (NOSQL)
developed by Facebook based on LevelDB, Google’s open
source project. Because it is NOSQL (Not Only SQL), it uses
a key-value storage method, making it suitable for processing
large amounts of data. In particular, it is optimized for high
performance on SSD storage devices because it has an LSM
(Log Structured Merge)-Tree structure.

B. PERFORMANCE

1) RANDOM READ WORKLOADS

In Figure 11, FIO_RR and FB_RR present the performance
on random read workloads without the write operation
across three novel mechanisms of ASTRO. As can be seen
from these results, ASTRO can achieve a speedup level
which is as good as the IDEAL. This because, the LPO
successfully rearranges the physical pages in the order of the
corresponding logical addresses within each region in read
reclaim, and as a result, ASTRO utilizes the rearranging to
improve the performance and minimize the ratio of demand
load, as shown in Figure 13b. ASTRO achieves speedup
and SpecREAD ratio of 1.87x, 99% for FIO_RR (4KB) and

VOLUME 13, 2025

T ASTRO(256)

Varmail

HASTRO(1024)  mASTRO(4096)

2 100 O om0 w0

YCSB_A YCSB_B YCSB_C YCSB_D YCSB_E YCSB_F Gmean

1.74x, 99% for FB_RR (4KB) compared to the baseline
(DFTL_NC [10]).

O Write ©Read O Speculative Read @ Demand-Load Read
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80%
60%
40%
20%
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FIGURE 13. (a) Breakdown of 1/0 requests and (b) Proportion of
speculative read.

2) REAL-WORLD WORKLOADS
To demonstrate the feasibility of our proposal in a real-
world workload, we test it on Filebench (FB) and YCSB.
The real-world workloads are broken into three categories:
(1) read-intensive, (2) write-intensive, and (3) non-intensive.
The read-intensive workloads are Webserver, Webproxy,
YCSB_B,C,D and E with a few write operation and the ratio
of reads is 98%, 80%, 83%, 91%, 70% and 91% in Figure 13a.
Figure 11 presents that ASTRO can achieve close to IDEAL
speedup, higher than DFTL_50(50% Caching), except for
Webproxy. This is because the LPO successfully rearrange
the physical pages in ascending order of LPA by read reclaim
even when there is an update due to a few of write. Hence, the
TLPOupdate has to be set to the appropriate value (i.e. 25% of
LRS) to ensure that the speedup is not significant degraded.
Interestingly, despite the 80% read operation ratio of
the Webproxy, the reason for the low speedup is that
updates occur repeatedly on the specific logical address
region [20]. Due to such repeated writes to the specific logical
address region, the speedup of ASTRO with SpecREAD is
slightly lower than the speedup observed with DFTL_50.
In Figure 11 and 13b, the speedup and SpecREAD ratio
of read-intensive workload are 1.34x, 99% for Websrever,
1.14x, 40% for Webproxy, 1.47x, 90% for YCSB_B, 1.49x,
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94% for YCSB_C, 1.29x, 87% for YCSB_D, 1.29x, 94% for
YCSB_E.

The write-intensive workloads are Fileserver and Varmail,
with write ratios of 51% and 68%, respectively. In Figure 11,
for write-intensive workloads, the performance gains are
higher or similar to DFTL_25, but less than DFTL_50. This is
because the LPO cannot successfully rearrange the physical
pages in ascending order of the LPA due to the high number
of writes and low read reclaim. Also, even if the rearranging
is completed, the contiguity is easily broken due to frequent
updates and the UB of ContCHECK is set to 1, which reduces
the SpecREAD ratio, as shown in Figure 13b. In this case, the
performance can be improved by setting the T7poreqaqd vValue
smaller (i.e. 50% of Tgrg) so that the rearrange occurs more
frequently, but the WAF due to the LPO can increase. The
speedup and SpecREAD ratio of write-intensive workload
are 1.13x, 68% for Filesrever and 1.0x, 20% for Varmail,
as shown in Figure 11 and 13b.

The non-intensive workloads are YCSB_A and F, with
write ratios of 39% both. In Figure 11, for non-intensive
workloads, the speedup is slightly higher than DFTL_50.
This is because the rearrange contiguity and SpecREAD ratio
by LPO are higher than write-intensive workload and lower
than read-intensive workload because the write and read
ratios are similar. As a result, the speedup and SpecREAD
ratio of non-intensive workload are 1.19x, 83% for both
YCSB_A and YCSB_F, as shown in Figure 11 and 13b.

m HostWrite @ RRWrite O LPO Write
57.355.3 57.255.3 41.239.8

120
10.0

£ 50

= 40
2.0
0.0

=i He ol m S m =
HO 2o go go go Ho go do Zo Zo Ho o
&, &5 &y &5 & & & &y &5 &, & &b
<< << < < << << < < << << < <
FIO_RR FB_RR File Web  Web Varmail YCSB YCSB YCSB YCSB YCSB YCSB
server server proxy A B Cc D E F

FIGURE 14. Write amplification factor.

C. WRITE AMPLIFICATION FACTOR

Figure 14 shows the WAF of DFTL and ASTRO for all
workloads. In random read and read-intensive workload, the
WAF by RR of DFTL is basically high. This is because
there are many read requests, so a lot of read reclaim
occurred. Since ASTRO performs LPO by Trporeqs When
read reclaim occurred, there is no additional WAF compared
to DFTL. On the other hand, in the write-intensive workload,
the WAF by the RR of DFTL is basically low. This is
because there are many write requests, so less read reclaim
occurred. Therefore, in ASTRO, the WAF by LPO occurs
not only by Trporeaa but also by Trpoupdare additionally.
Finally, in non-intensive workload, the WAF between the
RR of DFTL and the LPO of ASTRO is almost similar.
This is because the write and read ratio is similar, so LPO
by Trpoupdate and Trporeaqa is also performed at a similar
ratio. For all workloads, the WAF by Host is 1, and the
WAF by LPO is 1.9 for FIO_RR, 1.9 for FB_RR, 2.8 for
Fileserver, 1.4 for Webserver, 2.5 for Webproxy, 0.9 for
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TABLE 3. Hardware overhead.

28n Process(@500MHz) Baseline  ASTRO  Overhead
Cell Internal Power 77% 77% 0.00%
Power Net Switching Power 23% 23% s
Total Dynamic Power(uW) 358 371 3.63%
‘ Area Total Cell Area 4345 4704 8.26%

Varmail, 1.4 for YCSB_A, 1.7 for YCSB_B, 2.0 for YCSB_C,
1.4 for YCSB_D, 1.9 for YCSB_E and 1.4 for YCSB_F.

D. PERFORMANCE IMPACT OF UB COVERAGE

Figure 12 shows the performance impact of update bitmap
coverage (UBC). The UBC indicates how many pages are
allocated to 1 bit of update bitmap (UB). Therefore, if there is
almost no write, the speedup is the same regardless of UBC.
This is because there is almost no writing, so the probability
of contiguity being broken by update is very low regardless
of UBC. Therefore, FIO_RR, FB_RR, and Webserver show
the same speedup regardless of UBC.

On the other hand, if there is a certain amount of write,
the larger the UBC, the lower the speedup. This is because
there is a write, so the larger the UBC, the greater the
probability that the contiguity will be broken by update.
Once the continuity is broken in a specific logical region,
the UB of the ContCHECK is set to 1. Then, until it is
rearranged through the LPO, the speedup may be reduced
by performing demand load read rather than SpecREAD.
Therefore, compared to UBC 64, the UBC 4096 has a
speedup decrease of 10% for Fileserver, 8% for Webproxy,
0% for Varmail, 2% for YCSB_A, 13% for YCSB_B, 14%
for YCSB_C, 6% for YCSB_D, 8% for YCSB_E, 7% for
YCSB_F and 6% for Gmean.

E. IMPACT OF HARDWARE-ACCELERATED LPO

When rearranging the pages with FTL firmware in the ARM
processor, which is used in many SSD products, 37 cycles
are added to the latency of data movement with the DMA
engine due to the operation of checking the LPA and setting
the address. This corresponds to approximately 74ns based
on a Core Frequency of 500 MHz. Assuming that 8MB pages
(4KB x 2048) are rearranged, it can be seen that 151.522us
(74ns x 2048) is added to the data movement time. This
overhead can be eliminated by extending the DMA engine
to calculate the address in 1cycle automatically.

F. HARDWARE COST

Table 3 shows the hardware overhead of the extended DMA
engine. We synthesize the RTL design using the Synopsys
design compiler and UMC 28nm cell library at S00MHz. The
area of the DMA hardware increases by about 8.26%. The
major contributor to the hardware overhead is the additional
register to hold the DMA state to check the LPA in the OOB of
the physical page read from NAND. When setting the DMA
address, the extended DMA engine checks the LPA offset and
performs an operation to add the corresponding offset to the
based address of the rearranging area in the buffer.
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V. RELATED WORK

A. CACHING L2P MAPPING TABLE

Page-level mapping requires connecting all LPAs to PPAs,
so the L2P map size is large. For fast performance, all L2P
map must be cached. DFTL [10] selectively caches page-
level address mappings. HPB [15] is an integrated host-SSD
mapping table management method to increase the effective
capacity of the L2P map cache and utilizes host DRAM as the
L2P map cache. In [22], a technique is proposed to manage
the host memory more efficiently when it stores the L2P
mapping table alongside the normal host data. Even if these
approaches efficiently enlarge the L2P map cache size, they
require modification in the host software and may degrade the
application performance due to the reduced memory space
that can be allocated to the host applications. ASTRO does not
require any modification in the host software and additional
L2P map cache resources. In addition, HPB improves random
read performance by 1.57x to 1.67x by using Host DRAM,
while ASTRO improves random read performance by an
average of 1.8x with simple operations without Host DRAM.

B. L2P MAP MANAGEMENT

In constructing the L2P mapping table, SHRD [19] proposed
a new address reconstruction technique that converts random
write requests into sequential write requests. This approach
improves the spatial locality of IO requests to the storage.
A Hash-based space-efficient page-level FTL [32] was
proposed as a space-efficient method that uses a hash function
in address translation. Probability-based address translation
for Flash SSDs [14] was proposed as a new probability-
based address translation algorithm. In those prior works,
unlike existing conversion techniques that maintain accurate
L2P mapping information, a probabilistic data structure such
as a bloom filter is used. With this approach, the amount
of DRAM used for address conversion can be reduced by
20%. However, these approaches still require frequent search
operations for L2P mapping information. ASTRO has no
overhead for address translation as long as the contiguity of
pages is maintained.

VI. CONCLUSION

The L2P mapping table is essential for the NAND flash-
based SSDs. However, handling the table can be a critical
performance bottleneck as it is typically stored in slow flash
memory. A simple approach to mitigate this problem is to
cache the table in embedded DRAM. Unfortunately, however,
as SSD capacity gradually increases, the L2P mapping table
size also increases significantly. As a result, resource and
power risks are increasing as the size of embedded DRAM
required for cache increases.

To tackle this fundamental limitation of the NAND flash-
based SSDs, this paper proposes ASTRO, a framework to
translate LPAs to PPAs without accessing the L2P mapping
table as much as possible. ASTRO rearranges pages in
increasing order of the LPA when performing read reclaim.
Therefore, the increase in additional WAF for LPO can be
minimized. By doing this, ASTRO can translate the LPAs
to PPAs with a simple addition operation. Our experimental
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results demonstrate that ASTRO achieves an average 1.8x
performance improvement comparable to the configuration
with an ideal caching mechanism in random read workload.
And ASTRO improves performance by an average of 1.34x
on real-world read-intensive workloads and an average of
1.32x across all workloads compared to the IDEAL Gmean
value of 1.38x.
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