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Abstract

GPU memory virtualization has become essential for efficient pro-
gramming, memory management, and address space sharing among
computing devices in heterogeneous systems. Conventional GPU
virtual memory systems use multi-level Radix Page Tables (RPTs) to
store virtual-to-physical address mapping in device (GPU) memory.
When a TLB miss occurs, a page table walker accesses each level
of the page table sequentially to find the desired mapping. These
sequential accesses significantly degrade performance, adding pres-
sure to the GPU memory hierarchy. To make matters worse, recent
computing systems now support five-level RPTs, further increasing
the number of memory accesses required per page table walk.

To tackle this problem, we propose a novel framework called
Fixed-Size HPT (FS-HPT), which employs Hashed Page Tables (HPTs)
instead of traditional RPTs. Our framework is motivated by two key
observations. First, a GPU’s local page table is primarily responsi-
ble for storing the Page Table Entries (PTEs) of pages currently in
GPU memory. Second, most remote mappings are only live for a
short time and account for a small portion of the page table during
program execution. Motivated by these observations, FS-HPT uses
a large fixed-size hash table as the GPU’s local page table. In the
proposed framework, the page table size does not grow. Thus, our
approach fundamentally avoids page table resizing, a critical limita-
tion of HPTs. Instead, FS-HPT strategically evicts rarely-used PTEs
from the page table to reduce hash collisions. FS-HPT employs a
step table to provide fast table lookups and a victim buffer to mini-
mize the impact of PTE eviction on performance. These additional
components incur negligible overhead. Our experimental results
demonstrate that for irregular memory-intensive workloads, FS-
HPT and FS-HPT integrated with the state-of-the-art page table
walk technique outperform RPTs by an average of 27.8% and 61.7%,
respectively.
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1 Introduction

Modern GPUs supports memory virtualization to enable multi-
tenancy [38, 45], sharing address space with CPUs [48, 49], and
demand paging [1, 27, 47]. However, the benefits provided by mem-
ory virtualization do not come for free. To support memory virtual-
ization, GPUs employ hardware components such as a Translation
Lookaside Buffer (TLB) and a GPU MMU (GMMU). Before accessing
data pages, the GPU must translate a virtual address to a physical
address. For this translation, the GPU first accesses the TLB, and
when the translation request is missed in the TLB, it looks up a page
table. A discrete GPU typically has its own page table in the device
memory that maintains the virtual-to-physical mappings. Conven-
tional GPU page tables use a multi-level tree structure known as
Radix Page Tables (RPTs) [36, 37].

Due to GPUs experiencing frequent TLB misses, the address
translation process can become a significant performance bottle-
neck. Over the years, many efforts have been made to mitigate
these address translation overheads in GPUs. Increasing TLB reach
by coalescing TLB entries or page promotion can effectively reduce
address translation overhead [6, 29, 42]. Li et al. and Baruah et al.
exploited locality within or between Cooperative Thread Arrays
(CTAs) to increase the TLB hit rate [8, 31]. Several prior works have
attempted to reduce page table lookup overhead as the current GPU
page table design (i.e., RPTs) involves sequential pointer-chasing
accesses, known as page table walk, which causes severe perfor-
mance degradation. Shin et al. reduced the TLB miss penalty by
scheduling page table walk requests [48] and by coalescing page
table walks into a single memory access [49].
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However, all these techniques use the inefficient multi-level RPTs
as the baseline. Although it is possible to use Page Walk Caches
(PWCs) [7, 9, 10, 21] to replace these sequential pointer-chasing op-
erations with an MMU cache lookup, PWCs do not work effectively
for emerging memory-intensive workloads with large memory foot-
prints and irregular memory access patterns [41, 50, 54]. To make
matters worse, recent computing systems now support five-level
RPTs, expanding the virtual and physical address space [24] and
further increasing page table walk overheads.

In this paper, we propose a novel framework, called Fixed-Size
HPT (FS-HPT), which aims to tackle the fundamental limitation of
current RPT-based GPU virtual memory. FS-HPT adopts Hashed
Page Tables (HPTs) instead of RPTs for the GPU page table. Since
HPTs use a hash function to calculate a hash value and directly use
this as the table index, the HPT lookup requires only a memory
reference (if there is no hash collision). This fast lookup mecha-
nism of HPTs can eliminate the expensive pointer-chasing memory
accesses required by conventional RPTs.

Several recent works have proposed HPTs in the CPU do-
main [50, 51, 54]. State-of-the-art HPT designs [50, 51] reduce
address translation overheads by an average of 41%. They elab-
orately designed the HPTs to effectively manage hash collisions,
one of the critical challenges when using HPTs [54]. However, prior
HPT designs are primarily optimized for CPUs, so it is not straight-
forward to simply apply those designs to GPUs. They necessitate
adjustments in the page table size to manage hash collisions, which
requires migrating Page Table Entries (PTEs) and frequently relies
on OS support. The PTE migrations can significantly increase mem-
ory allocation time, and frequent OS interventions decrease GPU
performance [29]. In addition, state-of-the-art HPT design issues
multiple memory requests simultaneously for a page table walk
to exploit memory-level parallelism. This can lead to performance
degradation since GPUs are more bandwidth-sensitive than CPUs.

We exploit two key observations to efficiently adopt HPTs in
GPU’s virtual memory subsystems. First, there is an upper bound
for the number of PTEs the GPU’s page table can hold because
the page table is responsible primarily for maintaining the PTEs of
pages currently stored in the GPU memory. Second, the number of
remote mappings stored in the GPU page table accounts for only
a small portion of total entries. Recent GPUs allow direct access
to remote pages in the other devices [16, 47, 53]. To support direct
remote access, the GPU’s page table needs to hold the PTEs for both
local and remote pages, which increases the load factor as the page
table stores more remote mappings. However, we found that only
a few remote mappings will be accessed again because frequently
accessed remote mappings become local mappings.

Motivated by these two key observations, the FS-HPT framework
employs a fixed-size hashed page table whose size is sufficiently
large to mostly avoid the hash collisions, thereby eliminating dy-
namic resizing. FS-HPT uses open-addressing to handle hash col-
lisions during PTE allocation and stores open-addressing steps in
a step table to enable fast PTE accesses during address translation.
Accessing the step table can incur additional memory references as
the table exists in the device’s memory. To address this issue, we
repurpose the existing MMU cache (PWCs) as a step cache for stor-
ing recently accessed step table entries. We also propose a remote
PTE eviction policy to keep the occupancy of the HPT (i.e., load
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Figure 1: Baseline GPU architecture

factor) below a target level. With this remote PTE eviction policy,
the GPU driver [39] evicts rarely-used remote mappings from the
page table and stores them in a victim buffer implemented as a radix
tree structure for scalability.

The main contributions of this paper are as follows:

e We propose a novel framework, called FS-HPT, to improve
GPU virtual memory. FS-HPT employs a fixed-size hashed
page table to enable rapid page table lookup. In most cases,
FS-HPT can retrieve page table entries with a single memory
reference by using a step table and step cache. To the best
of our knowledge, this paper is the first work to study the
effectiveness of using HPTs as the GPU’s page table.

e We address a limitation regarding remote mappings by em-
ploying a remote PTE eviction policy and victim buffer.

e We evaluate the performance of FS-HPT using a detailed
GPU simulator. For irregular memory-intensive workloads,
FS-HPT and FS-HPT integrated with the state-of-the-art
page table walk technique outperform RPTs by an average
of 27.8% and 61.7%, respectively.

2 Background and Motivation

2.1 GPU Virtual Memory

Recent GPU systems have adopted the virtual memory [2, 36, 43,
44, 47] to share a virtual memory space between GPUs and CPUs.
There are two typical ways to enable shared virtual memory in GPU
systems. One is sharing a page table between the CPUs and GPUs
via I/O Memory Management Unit (IOMMU) hardware [43, 44].
This approach is typically applied to integrated GPUs that share
the main memory with CPUs [48, 49]. The second way is to let
CPUs and GPUs manage their own page tables separately. The CPU
page tables have the entire information, while the GPUs only retain
certain parts of the address translation information in their distinct
(local) page tables [32]. This organization is beneficial when GPUs
have their own distinct memory (VRAM) with a GMMU since GPUs
can then perform address translation without communication with
the CPUs (via the IOMMU) [29, 30, 32, 45]. In this paper, we select
the latter approach (i.e., address translation using a GMMU and
distinct GPU page tables) as the baseline architecture.
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Figure 2: PTE eviction and allocation in GPUs

Address translation: Figure 1 depicts the address translation pro-
cess in GPUs. Each Streaming Multiprocessor (SM) has a private
L1 TLB. When the SM issues memory instructions (load/store), it
generates address translation requests to get a physical address.
Before the requests are forwarded to the L1 TLB, a coalescer merges
these requests into a single translation request if they fall into a
single page range (4KB, 64KB, or 2MB) (@). Upon an L1 TLB miss,
Miss Status Holding Registers (MSHRs) merge missed requests, and
these merged requests are sent to the shared L2 TLB ().

If an L2 TLB miss occurs, it sends the translation requests to the
GMMU, which is shared across all SMs (®). The GMMU enqueues
arrived requests into a page walk queue. Then, a page table walker
pops the translation requests from the queue, and the walker looks
up the page table on the GPU side by sending memory requests to
the cache hierarchy (®). Since all SMs generate multiple address
translation requests simultaneously, there are tens of page table
walkers in the GMMU to increase parallelism [44]. We use four-
level Radix Page Tables (RPTs) [18] as a baseline [30, 37, 45, 48].
To mitigate sequential memory access of RPTs, the GMMU equips
PWCs [7] to cache the physical address of an intermediate page table
(except the last-level page table). As a result, the page table walker
accesses PWCs before sending requests to the cache hierarchy, and
if it hits, the walker can skip memory accesses (@).

Page fault handling: Basically, GPUs with the UVM system offer
the demand paging scheme [15]. Even though the GPUs have per-
formed the whole address translation process (@-®), the address
translation information (i.e., the virtual-to-physical mapping) may
not exist in the GPU local page table. This situation indicates that
the desired page is not in GPU local memory, so the GMMU gen-
erates a far fault and sends an interrupt signal to the CPU [1] (®).
On the CPU side, the GPU driver [1] walks the host-side page table
to get the required PTE and accesses the data page using that PTE
(@). Then, the GPU driver sends the data page to the GPU’s local
memory and populates the corresponding PTE in the GPU’s page
table using the interconnect (PCle or NVLink [35, 36]). Finally, the
address translation is replayed on the GPU side (©).

Managing GPU page tables: The GPU driver on the CPU side
manages the GPU’s page table before launching the kernel and
handling any page faults. Basically, the GPU’s page table stores
valid page table entries for pages in the device (GPU) memory,
and the CPU’s page table stores valid PTEs for pages in the host
(CPU) memory [39, 47]. Figure 2 depicts how the PTEs are managed
between the GPU’s and CPU’s page tables. When the GPU tries to
access PTE 4 for Page 4, the GMMU incurs a page fault because
Page 4 is not in the device (GPU) memory (®). Next, the GPU
driver migrates Page 4 from CPU to GPU memory. However, in the
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Figure 3: Radix page tables and hashed page tables (a) Radix
page tables (RPTs) (b) Hashed page tables (HPTs).

example shown in the figure 2, there is not enough space in GPU
memory, so the driver selects a victim page using a page eviction
policy [15]. In the example, Page 0 is evicted from GPU memory
and migrated to the CPU (®). Since Page 0 is evicted, the driver
invalidates PTE 0 in the GPU’s page table and populates the CPU’s
page table with PTE 0 (®). After the GPU driver migrates Page 4
from CPU to GPU memory (®). Also, the driver invalidates PTE 4
in the CPU’s page table and populates the GPU’s page table with
PTE 4 (®). Unlike the CPU, the GPU does not necessarily maintain
the PTEs of the pages swapped out to the CPU (invalid PTEs) since
the CPU’s page table maintains PTEs of swapped-out pages [39].

2.2 Multi-Level Radix Page Tables

Conventional CPUs and GPUs typically adopt RPTs [18, 21, 23, 24]
to maintain virtual-to-physical translation information. Figure 3a
depicts a four-level RPT. The page table walk process for four-level
RPTs is as follows. The upper 36 bits of a Virtual Address (VA) is
the Virtual Page Number (VPN), and this VPN is then divided into
four 9-bit fields that represent an index for each of the four levels
in the page table. The translation process starts with the Page Table
Base Register (PTBR), which stores a Page Map Level-4 (PML4)
base address. We can access a PML4 entry, which contains a base
address of the Page Directory Pointer (PDP), by adding the value
in the PTBR to the upper 9 bits (i.e., VA[47:39]) of the VPN. Now,
we have a PDP base address and can get the address of the next
level page table (PD) by adding the PDP base address to the next 9
bits (i.e., VA[38:30]) of the VPN. This process continues and ends
when the page table walker reaches the PTE, which contains the
data page’s Physical Page Number (PPN).

As described above, a single memory instruction results in five
memory accesses (four accesses for address translation and one
access for data). This stalls the core for a long time and adds signifi-
cant pressure to the GPU memory hierarchy [6, 7, 29, 42, 48, 49, 54].
In the worst case, all five memory accesses on the L2 cache could
be missed, resulting in five sequential DRAM accesses.
Limitations of radix page tables: Emerging workloads (e.g.,
graph processing [13, 34], bioinformatics [11, 33], and large lan-
guage models [52]) show irregular memory access patterns with
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large memory footprints. These workloads frequently incur TLB
misses, leading to numerous page table walks. In addition, due to the
inherent parallelism of GPUs, these workloads typically generate
multiple simultaneous page table walk requests, putting significant
pressure on the cache hierarchy. [43, 44, 48, 49]. Caching these
frequently and simultaneously generated page table walk requests
within a small PWC structure is difficult, resulting in more than
one memory access per page table walk.

Figure 4 shows the miss rates of a level-2 PWC for various bench-
marks. Since each entry in the level-4 and level-3 PWC covers 512GB
and 1GB logical region, respectively, the hit rate for these levels
is almost 100%. Therefore, we focus on the miss rate of a level-2
PWC. The benchmarks and simulation environment are described
in Section 5.1. We categorize the benchmarks based on their level-2
PWC miss rates. Workloads with a level-2 PWC miss rate exceed-
ing 20% are categorized as irregular, showing an average miss rate
of 33.8%. In contrast, workloads with a level-2 PWC miss rate of
20% or less are categorized as regular, with an average miss rate of
0.4%. To measure the impact of PWC misses on performance, we
compare the performance between a four-level RPT and an ideal
PWC configuration, where every page table walk hits at PWCs. Fig-
ure 5 shows the speedup of an ideal PWC over RPT. Since irregular
workloads suffer from frequent PWC misses, the ideal PWC shows
a speedup of 29% over RPT. This result demonstrates that reducing
PWC misses can significantly enhance overall performance.

One might suggest that scaling TLBs or PWCs could mitigate
page table walk overheads in RPTs. However, since TLBs and PWCs
serve as the SRAM cache, they are hard to scale in terms of latency
and area [29, 50, 54]. Additionally, with the upcoming five-level
RPTs, it becomes more challenging to scale them [24, 28, 50, 51, 54].

2.3 Hashed Page Tables

To reduce the substantial overheads associated with address trans-
lation using RPTs, previous studies have explored Hashed Page
Tables (HPTs). They have been implemented HPTs as an alternative
page table structure in some commercial CPUs [18-20, 50, 51, 54]
since the HPTs do not need sequential page table walks.

Figure 3b illustrates the basic structure of HPTs. A hash function
takes all bits of the VPN as input, and the output (a hash value)
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is used as an offset of the page table. We can get the physical ad-
dress of the PTE for the requested page by adding the hash value to
the PTBR value. As HPTs can directly generate the PTE’s physical
address, they can potentially offer faster address translation com-
pared to the RPTs, which may require multiple memory references.
Therefore, by using HPTs, we can achieve significant performance
gains comparable to the ideal PWCs.

However, due to the inherent nature of hash functions, distinct
hash keys (i.e., the input of the hash function) may yield identical
hash values, known as a hash collision. In a general hash table, a
hash key is a unique identifier derived from the processed data. In
HPTs, the VPN tag serves as the hash key. For precise translation,
we must store the hash key in each hash slot and compare the hash
key with the input virtual address’s VPN tag. If the hash key and
VPN tag do not match, we must handle this collision. Handling
hash collisions adds complexities to HPT design, so managing these
collisions is one of the key challenges of HPTs.

Hashed page tables in the CPU domain: State-of-the-art HPT
techniques [50, 51] have been proposed to resolve the hash collision
issue efficiently. Skarlatos et al. [50] proposed an Elastic Cuckoo
Page Table (ECPT) that prevents frequent hash collisions by re-
sizing the page table during program execution. The ECPT can
operate effectively with OS support and outperforms RPTs. How-
ever, this approach requires resizing the page table during program
execution, which is very cumbersome for GPUs. Resizing the page
table necessitates rehashing all its entries, leading to migration of
the page table entries and requiring frequent support from the OS.
These PTE migrations and frequent OS interventions prolong the
time it takes to handle PTE allocation within the GPU domain [1].

2.4 Motivation: Why Are HPTs a Good Choice

for GPU Page Tables?

Dynamic resizing of the page table is not necessary: The rea-
sons are twofold. First, the local page table primarily holds the
(local) mappings for the pages stored in GPU memory, allowing a
load factor! of the hashed page table can be maintained without
resizing the table. A lower load factor reduces the likelihood of
hash collisions. As described in Section 2.1, since the CPU’s page
table maintains any evicted PTEs from the GPU, the GPU’s page
table only needs to store valid PTEs of the pages currently stored in
the device memory. Thus, the number of valid PTEs in the GPU’s
page table reaches a saturation point when the device memory is
almost full, obviating the need for resizing the page table.

Second, the number of live remote mappings in the GPU’s local
page table will become saturated, and thereby, the page table’s load
factor does not keep increasing even when it stores remote map-
pings. Recent GPUs support remote access to host memory or peer
GPU memory by storing remote mappings in the GPU’s local page
table [3, 36]. Especially, recent NVIDIA GPUs [36, 38] use a page
access counter to prevent page migration of rarely accessed pages.
With the access counter, the GPU driver stores remote mappings
in the GPU’s page table and migrates only the pages whose access
counter value reaches a certain threshold. Even if this mechanism
effectively avoids the migration of rarely accessed pages [30], it can

!The load factor [14] of a hash table is a metric indicating the ratio of occupied entries
to the total number of slots available in the table.
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program execution.

increase the load factor of the page table as the GPU must store
remote mappings, causing more hash collisions.

However, we have found that a GPU’s page table does not need
to store all remote mappings. Figure 6 shows the liveness of re-
mote mappings during the execution of BFS [34]. The "liveness"
of a remote mapping is defined as the duration from the initial
access (first touch) of the remote mapping to its final access (last
touch). We measure liveness using the access counter-based page
migration [39]. As shown in the figure, the number of live remote
mappings decreases during program execution. This is because
frequently accessed remote mappings (hot remote PTEs) quickly
become local PTEs as the corresponding pages are migrated to
the GPU memory, and the infrequently accessed remote mappings
(cold remote PTEs) tend to fall into disuse after their initial period
of activity. Figure 7 shows the average proportion of live remote
mappings relative to the total number of page table entries for all
the benchmarks. The ratio of the live remote mappings ranges from
0% to 20% for the various benchmarks (with an average of 0.16%).
These results indicate that the number of live remote mappings
does not gradually increase in the GPU’s page table throughout the
execution of the programs.

The page table occupies a small portion of GPU memory: For
a 4KB base page size, the associated PTE size is eight bytes [37].
Therefore, GPUs that use RPTs require only 0.2% of total GPU
memory to store PTEs for pages that reside in GPU memory. If
we adopt HPTs for the GPU’s page table, we need a larger page
table than when using RPTs to avoid hash collisions. Since the
page table size for storing all the mappings of the pages in GPU
memory accounts for a small portion of the GPU memory, even if
we increase the page table size, the area overhead is negligible. For
example, the page table, which is 2.5x times larger (for a target load
factor of 0.4) than RPTs, only requires 0.5% of total GPU memory.

3 Fixed-Size Hashed Page Table

3.1 Overview

Key idea - Adopting HPTs as the GPU’s page table structure:
As described in Section 2.2, RPTs incur significant performance
degradation, and they also show poor scalability with increasing
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address space due to the sequential table lookup process required
by their hierarchical structure. HPTs are a viable alternative due to
their ability to quickly look up the desired page table entry using
a hash function. With the observation that GPUs do not need to
resize page tables dynamically, we apply HPTs to the GPU memory
system using a fixed-size page table. In this section, we present
the Fixed-Size Hashed Page Table (FS-HPT), a novel GPU virtual
memory framework that adopts Hashed Page Tables (HPTs) to
address the fundamental limitation of the conventional page table
structure (i.e., RPTs).

Challenges and solutions: In order to adopt HPTs in GPU ar-
chitectures, we need to address two key challenges. First, hash
collisions could occur even if we set a large page table size, so we
have to resolve them efficiently. To handle hash collisions, we adopt
open-addressing as it is simple to implement in the GPU driver and
GMMU at a low cost [14]. Hash collision handling with the open-
addressing scheme does lead to multiple memory accesses due to
the sequential probing scheme. We tackle this issue with a step table
and step cache (Section 3.3-3.5). With these, FS-HPT can look up
the page table with only one memory access.

Second, remote mappings can increase the load factor of the page
table. As described in Section 2.4, live remote mappings occupy a
tiny fraction of total PTEs. Thus, if we store only hot remote map-
pings in the page table, we can reduce hash collisions. To this end,
we propose a remote PTE eviction policy, which strategically evicts
rarely-used remote mappings from the page table (Section 3.6).
However, if the evicted mapping is used in the future, it will cause a
costly page fault. Thus, we also introduce the victim buffer to hold
evicted remote mappings in the device memory (Section 3.7). The
GMMU first looks up the step cache and step table, and if there
are no matching entries, it accesses the victim buffer to get the
requested remote mappings.

Figure 8 depicts the overall architecture of our FS-HPT frame-
work. The device memory contains the hashed page table, step
table, and victim buffer. In the GMMU, we repurpose the remaining
PWCs to use as the step cache and add a hash generator. When an
L2 TLB miss occurs, the page table walker first accesses the step
cache (@). If there is no entry in the step cache, the walker accesses
the step table and fills the step cache (). After, the walker looks up
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the page table with the value derived from the step table entry ((©).
If there is no matching entry in the step table, the walker accesses
the victim buffer to get the remote mappings (@). Finally, if there
are no matching mappings in the victim buffer, the GMMU incurs
a page fault, and the GPU driver populates the GPU’s page table by
referencing an HPT Map ((©). If there is no space for storing new
PTE, the driver evicts a remote mapping from the page table using
a remote PTE LRU counter maintained by the driver ().

3.2 HPT Entry Format

The naive implementation of HPTs shown in Figure 3b causes some
problems. First, there will be a notable decrease in the spatial locality
of the PTEs [50, 54]. This is because allocating a PTE for each HPT
entry does not ensure the spatial locality of PTEs in cacheline
granularity. Second, since the GPU driver evicts pages with a 2MB
Virtual Address Block granularity [1, 27], evicting pages from the
GPU incurs 512 lookups in the hashed page table to remove the
PTEs for the evicted pages. Finally, it is difficult to support various
page sizes simultaneously because the number of address bits used
as a VPN tag varies depending on page sizes. For example, if a GPU
uses 4KB and 2MB page sizes at the same time, the GMMU has
to access the page table twice with different VPN tags: VA[47:12]
for the 4KB page size and VA[47:21] for the 2MB page size. This
dual-access approach is necessary because the page size cannot be
determined with only a given VA.

To address these problems, we propose the new HPT entry for-
mat. Figure 9 shows a proposed HPT entry format. We cluster 512
PTEs of contiguous pages in a single hash table entry so that each
entry represents a contiguous 2MB memory region. The PTEs in
an HPT entry are indexed with a PTE offset obtained from the
VA[20:12]. This design ensures locality among PTEs and requires
only a single HPT lookup during page eviction. In addition, with
this HPT entry format, the VPN tag remains the same across all
supported page sizes (i.e., 4KB, 64KB, and 2MB [37]). Therefore, the
virtual address is translated using only one access to the table, even
when various page sizes are supported in the GPU virtual memory.

3.3 Hash Collision Resolution

There are several methods to resolve hash collisions, such as chain-
ing [14], open-addressing [14], and cuckoo hashing [40]. Among
these, we employ the open addressing scheme, which is simple
and thus can be implemented effectively in the GMMU and the
GPU driver. When inserting a new key-value pair, a hash function
calculates an index based on the key. If the entry associated with
the calculated index is empty, the key-value pair is inserted. If the
entry is already occupied by a different key (indicating a collision),
the open addressing scheme seeks an alternative empty entry for
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the key using a specific probing sequence. In our implementation,
the table index of the next candidate entry for the key is calcu-
lated using Stride and Step. During the iterative probing for an
empty entry, the driver increments the Step until the empty one
is found (new index = hash value + Stride X Step). The Stride is
pre-determined by the GPU driver when creating the page table.

3.4 PTE Allocation

When the GPU requires data pages that are not currently in GPU
memory, it causes a page fault, and the GPU driver on the CPU
side allocates the appropriate PTEs and migrates the data pages
to the GPU. To deal with PTE allocation, we introduce a software-
defined data structure called the HPT Map in the driver. The HPT
Map maintains allocation information on the HPT stored in device
memory; each HPT entry has a corresponding entry in the HPT
map. As illustrated in Figure 10, an HPT Map entry consists of
a VPN tag, a valid bit, and a deleted bit. The VPN tag is used to
verify whether the accessed entry is the correct one for the given
VA, and the valid bit indicates whether the corresponding HPT
entry is valid. The deleted bit indicates that the corresponding HPT
entry is no longer valid and is part of a probing sequence. In open
addressing, simply deleting an entry and leaving it empty (invalid)
can disrupt the continuity of the probing sequence. The deleted bit
simply addresses this challenge. Note that the driver can reuse the
deleted entry to allocate a new HPT entry because its valid bit is
invalid. In other words, if there is a deleted entry before finding
an invalid entry, the driver allocates a new HPT entry in the same
place as the deleted entry.

Algorithm 1 describes the PTE allocation process. First, the GPU
driver accesses the HPT Map entry, which is pointed to by the index
calculated by adding the hash value and HPT Map base address
(line 4). If the accessed entry is valid, the driver compares the new
PTE’s VPN tag with the tag in the accessed HPT Map entry (lines
5-6). If the tag matches, the driver allocates a PTE at the existing
HPT entry (line 7). Otherwise, the driver increments the Step and
accesses the next entry of the HPT Map (line 10). If the deleted
bit of the accessed entry is set, the driver increments the Step and
accesses the next entry of the HPT Map (line 16). To reuse a deleted
entry, the driver keeps the address of the first accessed deleted
entry (lines 13-14). If the accessed entry is invalid, it means there
are no allocated HPT entries for the requested VA. Then, the driver
checks whether oversubscription has occurred or if the number of
HPT entries has reached the threshold to guarantee enough space
for the data page and PTEs. If oversubscription occurs, the driver
evicts a local HPT entry (lines 18-19). If the number of HPT entries
reaches the threshold, the driver evicts a remote entry (lines 20-21).
Remote PTE eviction will be described in the section 3.6. Before
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Algorithm 1 PTE Allocation

1: Step « 0
2: Del Addr « null
3: while true do

4: Current Addr < Base Addr + Hash Value + (Step X Stride)
5: if Valid then
6: if VPN tag == Tag then
7: Allocate PTE > HPT entry already exists
8: break
9: else
10: Step < Step +1 > Tag mismatch
11: end if
12: else if Deleted then
13: if Del Addr == null then
14: Del Addr « Current Addr > Save first deleted entry address
15: end if
16: Step « Step +1 > Deleted entry
17: else if not Valid then
18: if Oversubscription then
19: Page eviction
20: else if Current HPT entries > Max. HPT entries then
21: Remote PTE eviction
22: end if
23: if Del Addr! = null then
24: Current Addr «— Del Addr > Reuse deleted entry
25: end if
26: Valid « true > Allocate new HPT entry
27: Allocate PTE
28: break
29: end if

30: end while

allocating a new HPT entry, the driver replaces the current address
with the deleted address if it exists (lines 23-24). Finally, the driver
allocates a new HPT entry and a new PTE (lines 26-27).

3.5 PTE Access with Step Table

Step table: The page table walker can access the HPT with a single
memory reference if there are no hash collisions. However, if hash
collisions occur, the walker needs to perform a probing sequence,
necessitating multiple sequential memory accesses to the HPT. To
tackle this issue with open addressing, we employ a step table. This
is designed to store the open-addressing steps for each HPT entry.
When the GPU driver populates the GPU’s page table, the driver
also stores the Step value in the step table. The step table resides
in device memory and is implemented as a hash table.

Figure 11 shows the design of the step table. A step table entry
stores a tag (VA[47:25]) and open-addressing steps for 16 HPT
entries in a contiguous 32MB region. We limit the maximum open-
addressing step value to eight, so each step table entry comprises
23 bits for the tag and an additional 48 bits (16X3 bits) for the step
values of 16 HPT entries. This setup guarantees that every entry
in the step table can represent a 32MB region using just 9 bytes of
information. Given the compact size of each entry in the step table,
we configure the step table’s size to achieve a low load factor of
0.01. This notably diminishes the frequency of hash collisions in
the step table. Despite maintaining this low load factor, a step table
of this size requires only 0.001% of device memory capacity.

However, when using the step table, the page table walker ac-
cesses the memory twice for every HPT lookup: once for the step
table and once more for the HPT. To address this issue, we repurpose
the existing PWCs as a step cache to store recently accessed step
table entries. As illustrated in Figure 11, the step cache is designed
as a direct-mapped cache structure. It has 32 entries, each com-
prising an 18-bit tag derived from VA[47:30] of the virtual address
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Figure 11: PTE access with step table

and 16 step values (48 bits = 3x16). Each entry of the step cache
is designated for 16 HPT entries allocated to a 32MB contiguous
region. As a result, the page table walker accesses the step cache
before accessing the step table. Since the step cache covers a 1GB
region, its hit rate is nearly 100%, ensuring that PTEs are mostly
retrievable with only a single memory access. It is worth noting
that the step cache substantially outperforms PWCs in terms of
area efficiency as it covers a 2MB region only using 3 bits, while
the PWC covers a 2MB region using 64 bits.

PTE access: Figure 11 also shows the page table access process. For
each page table walk request, the page table walker first looks up
the step cache. If there is no matching entry in the step cache, the
walker accesses the step table with an index calculated by adding
the value in the Step Table Base Register (STBR) and the hash
value from VA[47:25]. Next, it fills the step cache. If there is no
matching entry in the step table, the GMMU incurs a page fault.
Otherwise, if there is a matching entry, the walker accesses the HPT
by adding the value in the Page Table Base Register (PTBR), the
hash value from VA[47:21], and the Step X Stride. The GPU driver
pre-determines the Stride value, while the Step value is derived
from the step cache. Finally, the walker gets the requested PTE
from the HPT entry using the PTE offset (VA[20:12]) field.

3.6 Remote PTE Eviction Policy

Remote mappings can mitigate page migration overheads and page
thrashing issues in discrete GPU systems [16, 30, 47, 53]. How-
ever, if the number of remote mappings stored in the GPU’s page
table increases, its load factor can also keep increasing, leading
to frequent hash collisions in the page allocation process. As de-
scribed in Section 2.4, live remote mappings occupy only a small
fraction of the total page table capacity during program execution.
Consequently, by storing only the live (or hot) remote mappings
in the page table, we can effectively prevent the load factor from
continually increasing.

Figure 12 shows the concept of the remote PTE eviction policy
we propose to constrain the load factor of FS-HPT. The upper side
of the figure shows the page eviction policy current GPU drivers
already use [15, 39]. When oversubscription occurs, the GPU driver
selects a victim page from the front of the Least Recently Used
(LRU) list and evicts it (lines 18-19 in Algorithm 1). The LRU list is
updated for every time a page fault is handled.
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We extend this replacement policy to evict remote mappings
from the GPU’s page table. The lower side of the figure shows
the proposed remote PTE eviction policy. When allocating a new
HPT entry, if the load factor of the GPU’s page table reaches the
designated load factor threshold, the driver selects a victim entry
front of the LRU list and evicts that entry from the page table.
The GPU driver can update the LRU list since the GMMU tracks
the access frequency of each remote mapping [16, 47, 53]. Also,
the following equation (1) shows the calculation to determine the
load factor threshold used, where m is a multiplicative factor. For
example, if there is no oversubscription, we simply set m as 1.0,
and the page table can accommodate all required PTEs. On the
other hand, if there is an oversubscription, we can adjust the m
to be greater than 1.0. If m is 1.2, the page table can store PTEs of
pages that cover 120% of the device’s memory size. FS-HPT sets the
default m as 1.2, but m can be adjusted in some cases. We evaluate
the effects of varying m in Section 5.3.

# max. local HPT entries
# total HPT entries

load factor threshold = m X

3.7 Victim Buffer

With our remote PTE eviction policy, the GPU driver invalidates
remote mappings evicted from the GPU’s page table. However, if
an evicted remote mapping is accessed again, a page fault occurs. In
this case, the GPU driver populates the page table with that mapping
again. Even if page faults caused by re-accessing the previously
evicted remote entries are infrequent, when they occur, the GPU
undertakes costly page fault handling [1].

To minimize the performance impact of the remote PTE replace-
ment, we propose a victim buffer that maintains the evicted remote
mappings in device memory. With the victim buffer, we can prevent
page faults caused by re-accessing previously evicted remote map-
pings. Since the number of remote mappings evicted from the HPT
(primary page table) varies across applications, we design the victim
buffer to be more scalable by using a radix tree structure. While this
radix-tree design can lead to sequential memory accesses, it offers
significant benefits in managing the victim buffer. Furthermore, the
victim buffer is rarely accessed because the hot remote mappings
mostly remain in the HPT. Therefore, the performance impact of
sequential accesses to the buffer is trivial (Section 5.3).

4 Discussion

4.1 Step Cache-Less Design

Our design uses an MMU cache, called the step cache, to store
open-addressing steps of recently accessed HPT entries. While this
design is similar to PWCs, the step cache is more efficient than
PWCs as it stores steps instead of physical addresses of the PTEs.
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Even if a step cache is indeed more compact than PWCs, it still
experiences scaling issues as the application’s memory footprint
grows. In fact, FS-HPT can operate without the step cache if the
page table size is sufficiently large so that hash collisions rarely
occur. If hash collisions do not occur in the page allocation process,
the Step value will be zero for all HPT entries, eliminating the need
to read the Step value from the step table.

By exploiting this insight, we propose an alternative design, Step
Cache-Less FS-HPT. This approach excludes the step cache in the
GMMU while using a large HPT. Even if this approach increases the
area overhead of the page table, the impact of this area overhead is
trivial because the page table still basically occupies a small portion
of the device memory, as discussed in section 2.4.

To implement the step cache-less design, we need a small modi-
fication to FS-HPT. In that design, a hash collision can occur while
accessing the HPT. This is because a home HPT entry, whose index
is hash value + Stride X 0, is always accessed first as we assume that
the Step is zero for the given VA. We store a VPN tag in each HPT
entry to handle hash collisions. Since there are enough unused bits
in a PTE [35, 40, 54], we can store the VPN tag in each HPT entry.

If the requested translation is found in the home HPT entry (no
hash collision), the page table walker finishes the lookup with only
one memory reference. Otherwise, the page table walker reads a
Step value from the step table and then accesses the page table
again using the calculated index. Even if the step cache-less design
incurs three memory references per page table walk on a hash
collision, it achieves similar performance to the step cache-based
design because hash collisions are rare when using a larger HPT.
The impact of step cache-less design will be discussed in Section 5.4.

4.2 Implementation Overheads

Hardware overheads: FS-HPT requires a small amount of addi-
tional memory space and a few minor changes in the GMMU unit.
The hashed page table accounts for 0.5% of device memory, while a
corresponding step table with a maximum load factor of 0.01 occu-
pies 0.001% of device memory. The memory space requirements for
the victim buffer vary depending on the memory access patterns of
the applications, but it can be freely resized since it uses a multi-
level radix tree structure. Also, Employing the step cache incurs no
area overhead compared to the baseline architecture because we
repurpose existing PWCs as the step cache.

Software overheads: FS-HPT requires small changes to the GPU
driver. To support a GPU with an 80GB memory [38], the HPT Map
occupies only 200MB of memory space in the host memory. Since
the GPU driver spends about 80% of page fault handling time for
page migration and page unmapping (invalidating) from host page
table [1, 27], the time spent for HPT Map searching is negligible.
Our remote PTE eviction policy requires maintaining an LRU list
of remote mappings. The GPU driver can maintain and update this
LRU list by exploiting an existing Access Counter [16, 39, 47].

5 Evaluation

5.1 Experimental Environment

Simulation Setup: To evaluate the proposed technique, we used
GPGPU-sim v4.0 [26] configured as similar to an RTX 3070
GPU [38]. The detailed experimental setup is summarized in Table 1.
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Table 1: Experimental Setup

[ Component | Parameter |
# of SMs 46
Clock frequency 1500MHz
. 32 entries, fully associative, 20 cycles,
L1 TLB (private) 32 MSHR entries
1024 entries, 16 ways, 80 cycles,
L2 TLB (shared) 128 MSHR entries

L1 cache 128KB per SM, 40 cycles
L2 cache 4MB, 16 ways, 180 cycles
Memory GDDR6, 16 channels, 448GB/s bandwidth
RPT Structure 4-level radix page table
Page walk cache 32 entries, per-level, 4 cycles
Hash collision Open addressing
HPT Step cache 32 entries, 4 cycles
Page table size 0.5% of working set size

Page table walker
Page prefetching

16 page table walkers
16 consecutive pages (64KB)

We faithfully extended the simulator to support RPT-based address
translation by implementing multilevel TLBs, page table walkers,
page walk caches, and a radix page table. In our simulated GMMU,
we modeled highly threaded page table walkers [44] and PWCs
with 32 entries [7]. We also modeled the behavior of FS-HPT in the
simulator by adding the step table, step cache, victim buffer, and
remote PTE eviction policy. We do not consider demand paging
overhead in the same way as related works [22, 25, 29] since FS-HPT
focuses on reducing page table walk overhead. To determine the
size of the page table, we assumed that GPU memory capacity is
equal to the working set size of the benchmarks. Based on this
assumption, we configured the HPT size to cover a memory space
that is 2.5 times larger than the benchmark’s memory footprint. Set-
ting up this way, the HPT consumes only 0.5% of the GPU memory.
We modeled a prefetching scheme that prefetches 16 consecutive
pages to the GPU memory when a page fault occurs [15].

Benchmarks: We selected diverse benchmarks from Graphbig [34]
(BC, BFS, SP, CC, KC), Rodinia [12] (NW, HOT, PF) and Poly-
bench [17] (ATX, GEV, MVT, SYK, 2DC, BIC, COR, LU). The bench-
marks exhibiting a level-2 PWC miss rate greater than 20% are
categorized as irregular, while those with miss rates lower than 20%
fall into the regular category. This classification enables a compre-
hensive analysis of the proposed technique’s efficacy across diverse
workloads. The memory footprint of the benchmarks is ranging
from 864MB to 2306MB. To mitigate the issue of impractically long
simulation times tied to large memory footprints, we constrained
the working set size of the benchmarks to between 214 and 1024MB.

5.2 Performance Analysis

Performance comparison: Figure 13 shows the relative perfor-
mance of four-level RPT, FS-HPT, and ideal PWC. For the irregular
benchmarks, FS-HPT achieves a speedup of 15.8-35.8% (with an
average of 27.8%) compared to the four-level RPT. This significant
performance improvement with FS-HPT is comparable to the ideal
PWC, where we assume all page walks involve only a single memory
access. Typically, as the PWC miss rate increases, the performance
gain also increases. For example, BC and SP, which have relatively
low PWC miss rates compared to other irregular workloads, show
speedups of 15.8% and 18.3%, respectively. On the other side, ATX,
GEV, MVT, and BFS, whose PWC miss rates are about 40%, achieve
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speedups of 35.4%, 26.6%, 34.9%, and 35.8%, respectively. For the
regular workloads, performance is comparable across RPT, FS-HPT,
and ideal PWC because most page walk requests hit in the PWC.
The number of memory references per page table walk: To
understand why FS-HPT offers a significant speedup comparable
to an ideal PWC, we examine the behavior of the page table walk
process. Figure 14 shows the number of memory references per
page table walk for each benchmark running with RPT, FS-HPT,
or ideal PWC configuration. For all benchmarks, FS-HPT involves
much fewer memory references per page table walk than RPT. For
irregular workloads especially, the number of memory references
per page table walk for RPT is an average of 1.35, while for FS-HPT
it is only 1.01, which is very close to the ideal case.

Since FS-HPT effectively resolves hash collisions with the step
table and step cache, it can achieve fewer memory references per
page table walk. The step cache achieves an over 99% hit rate for all
benchmarks, while conventional PWCs offer only a 65% hit rate on
average for irregular benchmarks. This is because an entry of the
step cache covers a region 16 times larger (32MB) than an entry of
the PWCs. This high hit rate of the step cache makes the average
number of memory references per page table walk almost one.
Average page table walk latency: Figure 15 shows the average
page table walk latency for each benchmark running on RPT, FS-
HPT, and ideal PWC. All results are normalized to RPT. For irregular
workloads, FS-HPT shows a 22.2% reduction on average in page
table walk latency compared to RPT, which is close to the perfor-
mance of an ideal PWC (23.5%). Since FS-HPT reduces the number
of memory references per page table walk, 1) the overall queueing
latency for a page walk and 2) the memory access latency per page
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table walk queue both decreases. As a result, the average page table
walk latency decreases, reducing the stall time for each SM due to
address translation.

5.3 Impact of Victim Buffer

We measure the performance of all benchmarks running at 150%
oversubscription to evaluate the impact of the victim buffer. For
150% oversubscription, we set the device memory size to 66.6% of
each benchmark’s working set size to avoid extremely long simula-
tion times. Figure 16 shows the speedup of FS-HPT over RPT both
with and without 150% oversubscription, respectively, varying the
multiplicative factor m (bar graph). As mentioned in Section 3.6,
the default m is 1.2. With m = 1.2, for irregular workloads, FS-HPT
offers slightly lower performance gains in 150% oversubscription
scenarios compared to the case with no oversubscription. The av-
erage speedup with m = 1.2 is 21.5%, while the average speedup
is 27.8% without oversubscription. The small reduction in perfor-
mance improvement is mainly due to oversubscription requiring
accessing of the victim buffer to retrieve cold remote mappings.
Figure 16 also shows the victim buffer access rate as a proportion
of total page table accesses for all workloads (line graph). With
m = 1.2, GEV, SYK, BFS, SP, and NW show over 1% victim buffer
access rates (1.4-4.4%). Nevertheless, NW, which has the highest
victim buffer access rate (4.4%), still shows a speedup of 11% over
RPT. These results demonstrate that while the performance gain
from using FS-HPT is slightly reduced with oversubscription, it still
provides a substantial performance gain compared to RPT.
Sensitivity analysis: We evaluate the performance of FS-HPT
under condition of 150% memory oversubscription by varying the
multiplicative factor to assess the impact of different load factor
thresholds. For each multiplicative factor (1.0, 1.1, 1.2, 1.3, 1.4, and
1.5), FS-HPT achieves average speedups of 11.7%, 17.7%, 21.5%,
25.3%, 26.6%, and 27.8%, over RPT, respectively. With m = 1.0, all
remote accesses result in victim buffer lookups after the load factor
reaches its threshold. Therefore, the average speedup over RPT with
m = 1.0 is 11.7%, which is smaller than in the no oversubscription
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case. Some benchmarks (NW and KC) show lower performance
than RPT with this multiplicative factor because of the high victim
buffer access rate. On the other hand, with m = 1.5, the GPU’s page
table can store all the PTEs of pages in the working set with 150%
oversubscription. Therefore, the victim buffer access rate becomes
zero, and FS-HPT achieves comparable performance to in the no
oversubscription case. Since the probing time for open addressing
accounts for a small portion of the long page fault handling times,
the impact of increasing the multiplicative factor on performance
is trivial. Rather, a high multiplicative factor reduces the number
of accesses to the victim buffer, providing near-ideal performance.

5.4 Performance of Step Cache-Less Design

We evaluate the performance of the step cache-less design discussed
in Section 4.1. Figure 17 shows the performance of the step cache-
less design and its hash collision rate for page table access with
varying sizes of the page table. Each bar graph depicts the speedup
of FS-HPT with the step cache-less design for different page table
sizes compared to RPT. The line graph shows the hash collision
rate on page table lookup. Starting from the base page table size
(0.5% of total memory), which is our default configuration, we
gradually increase the size of the page table to 1%, 2%, and then
4% of device memory. As expected, while accessing the HPT, the
hash collision rate decreases as the page table size increases. With
the 0.5% configuration, the performance decreases by an average
of 2.2% compared to RPT due to the high collision rate. However,
the step cache-less design with page table sizes of 1%, 2%, and 4%
of device memory shows an average 10%, 19%, and 24.4% speedup
over RPTs for irregular workloads, respectively. These results imply
that using a large HPT can achieve near-ideal performance without
the need for an SRAM cache in the GMMU.

5.5 Impact of Large Page Size

Figure 18 shows the speedup for benchmarks running on RPT, FS-
HPT, and ideal PWC over RPT with a 64KB base page size. For
irregular workloads, FS-HPT achieves a speedup of 24.5% over RPT,
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Figure 18: Speedup of FS-HPT over RPT for 64KB page size
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Figure 19: Speedup of FS-HPT combined with a state-of-the-
art page table walk optimization over RPT.

which is a slight decrease compared to the 4KB page size (27.8%).
Since using a large page size increases the TLB reach and thus
reduces the number of page table walks, the performance gain of
FS-HPT is slightly reduced. However, using a large page is not a
panacea since it consumes more PCle bandwidth [6]. For irregular
workloads, using large pages causes internal fragmentation issues
because certain workloads may use only a small portion of the re-
quired pages. Moreover, FS-HPT is expected to deliver performance
enhancements even with large pages, as current large pages may
become small pages for emerging workloads.

5.6 Comparison and Compatibility with Other
Techniques

We compare the performance of FS-HPT with a state-of-the-art
technique [49] called Neighborhood-Aware Address Translation
(NHA). Figure 19 shows the speedups of RPT, RPT with NHA, FS-
HPT, FS-HPT with NHA, and ideal PWC with NHA over RPT. FS-
HPT shows an average speedup of 5.8% over RPT with NHA for
irregular workloads. RPT with NHA shows no speedup for ATX,
GEV, and MVT since there is non-spatial-locality among the page
table walks. On the other hand, RPT with NHA gets a speedup
for some regular workloads (CC and KC). This is because, unlike
FS-HPT, RPT with NHA can reduce the number of page table walks
by coalescing the page table walks that fall into the same cacheline.

The strength of FS-HPT comes from its orthogonality to other
techniques. Since FS-HPT guarantees the locality of PTEs within
2MB granularity, FS-HPT can be applied with NHA. FS-HPT with
NHA shows an average speedup of 61.7% over RPT, which is near
the performance of ideal PWC with NHA.

6 Related Works

Optimizing TLB: There are several works [6, 29, 42] focused on in-
creasing TLB reach by merging TLB entries and using large page [4].
Baruah et al. [8] tried to increase the TLB hit rate by exploiting
locality among thread blocks by probing another L1 TLB and by
prefetching L1 TLB entries. These techniques could be applied with
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FS-HPT because our technique focuses on reducing page table walk
overheads and can support multiple page sizes.

Reducing page table walk overhead: Shin et al. [48] proposed
an efficient page table walk scheduling policy by exploiting SIMD
execution characteristics. They scheduled page table walk requests
using the "shortest-job-first" principle and "batch" processing. Also,
Shin et al. [49] reduced the page table walk overhead by coalescing
multiple page table walk requests that fall into a single cacheline.
Since FS-HPT ensures the spatial locality of PTEs in cacheline
granularity, coalescing page table walk requests is compatible with
FS-HPT.

Virtual memory in multi-chip systems: Pratheek et al. [46] tried
to mitigate address translation overhead in Multi-Chip-Module
GPUs (MCM GPUs) [5, 55, 56] by exploiting the aggregated ca-
pacity of L2 TLB while reducing remote accesses, which causes
the NUMA effect. In MCM designs, handling multiple memory
references during a page table walk can significantly increase the
occurrence of remote accesses. From this perspective, our FS-HPT
design is a promising solution, as it offers substantial benefits for
future multi-chip GPUs.

7 Conclusions

In this paper, we rearchitect GPU virtual memory to tackle its
current address translation overheads by replacing multi-level Radix
Page Tables (RPTs) with Hashed Page Tables (HPTs). We discovered
that GPU page tables primarily store translation information for
pages in device memory. Thus, these page tables do not continue
to grow without bounds and remain substantially smaller than
the device memory’s capacity. Leveraging this characteristic, we
introduce a Fixed-Size Hashed Page Table (FS-HPT). FS-HPT does
not dynamically increase its page table size and thus avoids any
overheads from resizing the page table, avoiding a critical limitation
in HPTs. Instead, FS-HPT strategically evicts rarely-used Page Table
Entries (PTEs) to maintain a target load factor. FS-HPT employs
a step table to provide fast table lookups by avoiding sequential
probing operations when the open addressing scheme is used for
collision resolution. To minimize the performance impact of PTE
eviction, FS-HPT uses a victim buffer, which is slow but scalable,
to hold evicted PTEs. Our experimental results show that FS-HPT
achieves a 27.8% performance improvement on average over RPT
for irregular memory-intensive workloads.
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